
Competitive Programmer’s Handbook

Antti Laaksonen

December 31, 2016

ii

Contents

Preface v

I Basic techniques 1

1 Introduction 3
1.1 Programming languages . 3
1.2 Input and output . 4
1.3 Handling numbers . 6
1.4 Shortening code . 8
1.5 Mathematics . 9

2 Time complexity 15
2.1 Calculation rules . 15
2.2 Complexity classes . 18
2.3 Estimating efficiency . 19
2.4 Maximum subarray sum . 19

3 Sorting 23
3.1 Sorting theory . 23
3.2 Sorting in C++ . 27
3.3 Binary search . 29

II Graph algorithms 33

III Advanced topics 35

iii

iv

Preface

The purpose of this book is to give you a thorough introduction to competitive pro-
gramming. The book assumes that you already know the basics of programming,
but previous background on competitive programming is not needed.

The book is especially intended for high school students who want to learn
algorithms and possibly participate in the International Olympiad in Informatics
(IOI). The book is also suitable for university students and anybody else interested
in competitive programming.

It takes a long time to become a good competitive programmer, but it is also
an opportunity to learn a lot. You can be sure that you will learn a great deal
about algorithms if you spend time reading the book and solving exercises.

The book is under continuous development. You can always send feedback
about the book to ahslaaks@cs.helsinki.fi.

v

vi

Part I

Basic techniques

1

Chapter 1

Introduction

Competitive programming combines two topics: (1) design of algorithms and (2)
implementation of algorithms.

The design of algorithms consists of problem solving and mathematical
thinking. Skills for analyzing problems and solving them using creativity is
needed. An algorithm for solving a problem has to be both correct and efficient,
and the core of the problem is often how to invent an efficient algorithm.

Theoretical knowledge of algorithms is very important to competitive pro-
grammers. Typically, a solution for a problem is a combination of well-known
techniques and new insights. The techniques that appear in competitive pro-
gramming also form the basis for the scientific research of algorithms.

The implementation of algorithms requires good programming skills. In
competitive programming, the solutions are graded by testing an implemented
algorithm using a set of test cases. Thus, it is not enough that the idea of the
algorithm is correct, but the implementation has to be correct as well.

Good coding style in contests is straightforward and concise. The solutions
should be written quickly, because there is not much time available. Unlike in
traditional software engineering, the solutions are short (usually at most some
hundreds of lines) and it is not needed to maintain them after the contest.

1.1 Programming languages

At the moment, the most popular programming languages in contests are C++,
Python and Java. For example, in Google Code Jam 2016, among the best 3,000
participants, 73 % used C++, 15 % used Python and 10 % used Java1. Some
participants also used several languages.

Many people think that C++ is the best choice for a competitive programmer,
and C++ is nearly always available in contest systems. The benefits in using C++
are that it is a very efficient language and its standard library contains a large
collection of data structures and algorithms.

On the other hand, it is good to master several languages and know the
benefits of them. For example, if big integers are needed in the problem, Python

1https://www.go-hero.net/jam/16

3

https://www.go-hero.net/jam/16

can be a good choice because it contains a built-in library for handling big
integers. Still, usually the goal is to write the problems so that the use of a
specific programming language is not an unfair advantage in the contest.

All examples in this book are written in C++, and the data structures and
algorithms in the standard library are often used. The book follows the C++11
standard, that can be used in most contests nowadays. If you can’t program in
C++ yet, now it is a good time to start learning.

C++ template

A typical C++ template for competitive programming looks like this:

#include <bits/stdc++.h>

using namespace std;

int main() {
// solution comes here

}

The #include line at the beginning of the code is a feature in the g++ compiler
that allows to include the whole standard library. Thus, it is not needed to
separately include libraries such as iostream, vector and algorithm, but they
are available automatically.

The using line determines that the classes and functions of the standard
library can be used directly in the code. Without the using line we should write,
for example, std::cout, but now it is enough to write cout.

The code can be compiled using the following command:

g++ -std=c++11 -O2 -Wall code.cpp -o code

This command produces a binary file code from the source code code.cpp.
The compiler obeys the C++11 standard (-std=c++11), optimizes the code (-O2)
and shows warnings about possible errors (-Wall).

1.2 Input and output

In most contests, standard streams are used for reading input and writing output.
In C++, the standard streams are cin for input and cout for output. In addition,
the C functions scanf and printf can be used.

The input for the program usually consists of numbers and strings that are
separated with spaces and newlines. They can be read from the cin stream as
follows:

int a, b;
string x;
cin >> a >> b >> x;

4

This kind of code always works, assuming that there is at least one space or
one newline between each element in the input. For example, the above code
accepts both the following inputs:

123 456 apina

123 456
apina

The cout stream is used for output as follows:

int a = 123, b = 456;
string x = "apina";
cout << a << " " << b << " " << x << "\n";

Handling input and output is sometimes a bottleneck in the program. The
following lines at the beginning of the code make input and output more efficient:

ios_base::sync_with_stdio(0);
cin.tie(0);

Note that the newline "\n" works faster than endl, becauses endl always
causes a flush operation.

The C functions scanf and printf are an alternative to the C++ standard
streams. They are usually a bit faster, but they are also more difficult to use. The
following code reads two integers from the input:

int a, b;
scanf("%d %d", &a, &b);

The following code prints two integers:

int a = 123, b = 456;
printf("%d %d\n", a, b);

Sometimes the program should read a whole line from the input, possibly
with spaces. This can be accomplished using the getline function:

string s;
getline(cin, s);

If the amount of data is unknown, the following loop can be handy:

while (cin >> x) {
// koodia

}

This loop reads elements from the input one after another, until there is no more
data available in the input.

5

In some contest systems, files are used for input and output. An easy solution
for this is to write the code as usual using standard streams, but add the following
lines to the beginning of the code:

freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);

After this, the code reads the input from the file ”input.txt” and writes the output
to the file ”output.txt”.

1.3 Handling numbers

Integers

The most popular integer type in competitive programming is int. This is a
32-bit type with value range −231 . . .231 −1, i.e., about −2 ·109 . . .2 ·109. If the
type int is not enough, the 64-bit type long long can be used, with value range
−263 . . .263 −1, i.e., about −9 ·1018 . . .9 ·1018.

The following code defines a long long variable:

long long x = 123456789123456789LL;

The suffix LL means that the type of the number is long long.
A typical error when using the type long long is that the type int is still

used somewhere in the code. For example, the following code contains a subtle
error:

int a = 123456789;
long long b = a*a;
cout << b << "\n"; // -1757895751

Even though the variable b is of type long long, both numbers in the expres-
sion a*a are of type int and the result is also of type int. Because of this, the
variable b will contain a wrong result. The problem can be solved by changing
the type of a to long long or by changing the expression to (long long)a*a.

Usually, the problems are written so that the type long long is enough. Still,
it is good to know that the g++ compiler also features an 128-bit type __int128_t
with value range −2127 . . .2127 −1, i.e., −1038 . . .1038. However, this type is not
available in all contest systems.

Modular arithmetic

We denote by x mod m the remainder when x is divided by m. For example,
17 mod 5= 2, because 17= 3 ·5+2.

Sometimes, the answer for a problem is a very big integer but it is enough
to print it ”modulo m”, i.e., the remainder when the answer is divided by m (for

6

example, ”modulo 109 +7”). The idea is that even if the actual answer may be
very big, it is enough to use the types int and long long.

An important property of the remainder is that in addition, subtraction and
multiplication, the remainder can be calculated before the operation:

(a+b) mod m = (a mod m+b mod m) mod m
(a−b) mod m = (a mod m−b mod m) mod m
(a ·b) mod m = (a mod m ·b mod m) mod m

Thus, we can calculate the remainder after every operation and the numbers
will never become too large.

For example, the following code calculates n!, the factorial of n, modulo m:

long long x = 1;
for (int i = 2; i <= n i++) {

x = (x*i)%m;
}
cout << x << "\n";

Usually, the answer should be always given so that the remainder is between
0 . . .m−1. However, in C++ and other languages, the remainder of a negative
number can be negative. An easy way to make sure that this will not happen is
to first calculate the remainder as usual and then add m if the result is negative:

x = x%m;
if (x < 0) x += m;

However, this is only needed when there are subtractions in the code and the
remainder may become negative.

Floating point numbers

The usual floating point types in competitive programming are the 64-bit double
and, as an extension in the g++ compiler, the 80-bit long double. In most cases,
double is enough, but long double is more accurate.

The required precision of the answer is usually given. The easiest way is to
use the printf function that can be given the number of decimal places. For
example, the following code prints the value of x with 9 decimal places:

printf("%.9f\n", x);

A difficulty when using floating point numbers is that some numbers cannot
be represented accurately, but there will be rounding errors. For example, the
result of the following code is surprising:

double x = 0.3*3+0.1;
printf("%.20f\n", x); // 0.99999999999999988898

7

Because of a rounding error, the value of x is a bit less than 1, while the
correct value would be 1.

It is risky to compare floating point numbers with the == operator, because
it is possible that the values should be equal but they are not due to rounding
errors. A better way to compare floating point numbers is to assume that two
numbers are equal if the difference between them is ε, where ε is a small number.

In practice, the numbers can be compared as follows (ε= 10−9):

if (abs(a-b) < 1e-9) {
// a and b are equal

}

Note that while floating point numbers are inaccurate, integers up to a certain
limit can be still represented accurately. For example, using double, it is possible
to accurately represent all integers having absolute value at most 253.

1.4 Shortening code

Short code is ideal in competitive programming, because the algorithm should be
implemented as fast as possible. Because of this, competitive programmers often
define shorter names for datatypes and other parts of code.

Type names

Using the command typedef it is possible to give a shorter name to a datatype.
For example, the name long long is long, so we can define a shorter name ll:

typedef long long ll;

After this, the code

long long a = 123456789;
long long b = 987654321;
cout << a*b << "\n";

can be shortened as follows:

ll a = 123456789;
ll b = 987654321;
cout << a*b << "\n";

The command typedef can also be used with more complex types. For exam-
ple, the following code gives the name vi for a vector of integers, and the name
pi for a pair that contains two integers.

typedef vector<int> vi;
typedef pair<int,int> pi;

8

Macros

Another way to shorten the code is to define macros. A macro means that certain
strings in the code will be changed before the compilation. In C++, macros are
defined using the command #define.

For example, we can define the following macros:

#define F first
#define S second
#define PB push_back
#define MP make_pair

After this, the code

v.push_back(make_pair(y1,x1));
v.push_back(make_pair(y2,x2));
int d = v[i].first+v[i].second;

can be shortened as follows:

v.PB(MP(y1,x1));
v.PB(MP(y2,x2));
int d = v[i].F+v[i].S;

It is also possible to define a macro with parameters which makes it possible
to shorten loops and other structures in the code. For example, we can define the
following macro:

#define REP(i,a,b) for (int i = a; i <= b; i++)

After this, the code

for (int i = 1; i <= n; i++) {
haku(i);

}

can be shortened as follows:

REP(i,1,n) {
haku(i);

}

1.5 Mathematics

Mathematics plays an important role in competitive programming, and it is not
possible to become a successful competitive programmer without good skills in
mathematics. This section covers some important mathematical concepts and
formulas that are needed later in the book.

9

Sum formulas

Each sum of the form
n∑

x=1
xk = 1k +2k +3k + . . .+nk

where k is a positive integer, has a closed-form formula that is a polynomial of
degree k+1. For example,

n∑
x=1

x = 1+2+3+ . . .+n = n(n+1)
2

and
n∑

x=1
x2 = 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)

6
.

An arithmetic sum is a sum where the difference between any two consecu-
tive numbers is constant. For example,

3+7+11+15

is an arithmetic sum with constant 4. An arithmetic sum can be calculated using
the formula

n(a+b)
2

where a is the first number, b is the last number and n is the amount of numbers.
For example,

3+7+11+15= 4 · (3+15)
2

= 36.

The formula is based on the fact that the sum consists of n numbers and the
value of each number is (a+b)/2 on average.

A geometric sum is a sum where the ratio between any two consecutive
numbers is constant. For example,

3+6+12+24

is a geometric sum with constant 2. A geometric sum can be calculated using the
formula

bx−a
x−1

where a is the first number, b is the last number and the ratio between consecu-
tive numbers is x. For example,

3+6+12+24= 24 ·2−3
2−1

= 45.

This formula can be derived as follows. Let

S = a+ax+ax2 +·· ·+b.

By multiplying both sides by x, we get

xS = ax+ax2 +ax3 +·· ·+bx,

10

and solving the equation
xS−S = bx−a.

yields the formula.
A special case of a geometric sum is the formula

1+2+4+8+ . . .+2n−1 = 2n −1.

A harmonic sum is a sum of the form
n∑

x=1

1
x
= 1+ 1

2
+ 1

3
+ . . .+ 1

n
.

An upper bound for the harmonic sum is log2(n)+1. The reason for this is
that we can change each term 1/k so that k becomes a power of two that doesn’t
exceed k. For example, when n = 6, we can estimate the sum as follows:

1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
≤ 1+ 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

4
.

This upper bound consists of log2(n)+1 parts (1, 2 ·1/2, 4 ·1/4, etc.), and the sum
of each part is at most 1.

Set theory

A set is a collection of elements. For example, the set

X = {2,4,7}

contains elements 2, 4 and 7. The symbol ; denotes an empty set, and |S| denotes
the size of set S, i.e., the number of elements in the set. For example, in the
above set, |X | = 3.

If set S contains element x, we write x ∈ S, and otherwise we write x ∉ S. For
example, in the above set

4 ∈ X and 5 ∉ X .

New sets can be constructed as follows using set operations:

• The intersection A∩B consists of elements that are both in A and B. For
example, if A = {1,2,5} and B = {2,4}, then A∩B = {2}.

• The union A ∪B consists of elements that are in A or B or both. For
example, if A = {3,7} and B = {2,3,8}, then A∪B = {2,3,7,8}.

• The complement Ā consists of elements that are not in A. The interpre-
tation of a complement depends on the universal set that contains all
possible elements. For example, if A = {1,2,5,7} and the universal set is
P = {1,2, . . . ,10}, then Ā = {3,4,6,8,9,10}.

• The difference A \ B = A∩ B̄ consists of elements that are in A but not
in B. Note that B can contain elements that are not in A. For example, if
A = {2,3,7,8} and B = {3,5,8}, then A \ B = {2,7}.

If each element of A also belongs to S, we say that A is a subset of S, denoted
by A ⊂ S. Set S always has 2|S| subsets, including the empty set. For example,
the subsets of the set {2,4,7} are

11

;, {2}, {4}, {7}, {2,4}, {2,7}, {4,7} ja {2,4,7}.

Often used sets are

• N (natural numbers),
• Z (integers),
• Q (rational numbers) and
• R (real numbers).

The set N of natural numbers can be defined in two ways, depending on the
situation: either N= {0,1,2, . . .} or N= {1,2,3, ...}.

We can also construct a set using a rule of the form

{ f (n) : n ∈ S},

where f (n) is some function. This set contains all elements f (n) where n is an
element in S. For example, the set

X = {2n : n ∈Z}

contains all even integers.

Logic

The value of a logical expression is either true (1) or false (0). The most impor-
tant logical operators are ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒
(implication) and ⇔ (equivalence). The following table shows the meaning of
the operators:

A B ¬A ¬B A∧B A∨B A ⇒ B A ⇔ B
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 1

The negation ¬A reverses the value of an expression. The expression A∧B is
true if both A and B are true, and the expression A∨B is true if A or B or both
are true. The expression A ⇒ B is true if whenever A is true, also B is true. The
expression A ⇔ B is true if A and B are both true or both false.

A predicate is an expression that is true or false depending on its parameters.
Predicates are usually denoted by capital letters. For example, we can define
a predicate P(x) that is true exactly when x is a prime number. Using this
definition, P(7) is true but P(8) is false.

A quantifier connects a logical expression to elements in a set. The most
important quantifiers are ∀ (for all) and ∃ (there is). For example,

∀x(∃y(y< x))

12

means that for each element x in the set, there is an element y in the set such
that y is smaller than x. This is true in the set of integers, but false in the set of
natural numbers.

Using the notation described above, we can express many kinds of logical
propositions. For example,

∀x((x > 2∧¬P(x))⇒ (∃a(∃b(x = ab∧a > 1∧b > 1))))

means that if a number x is larger than 2 and not a prime number, there are
numbers a and b that are larger than 1 and whose product is x. This proposition
is true in the set of integers.

Functions

The function bxc rounds the number x down to an integer, and the function dxe
rounds the number x up to an integer. For example,

b3/2c = 1 and d3/2e = 2.

The functions min(x1, x2, . . . , xn) and max(x1, x2, . . . , xn) return the smallest
and the largest of values x1, x2, . . . , xn. For example,

min(1,2,3)= 1 and max(1,2,3)= 3.

The factorial n! is defined

n∏
x=1

x = 1 ·2 ·3 · . . . ·n

or recursively
0! = 1
n! = n · (n−1)!

The Fibonacci numbers arise in several situations. They can be defined
recursively as follows:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)

The first Fibonacci numbers are

0,1,1,2,3,5,8,13,21,34,55, . . .

There is also a closed-form formula for calculating Fibonacci numbers:

f (n)= (1+p
5)n − (1−p

5)n

2n
p

5
.

13

Logarithm

The logarithm of a number x is denoted logk(x) where k is the base of the
logarithm. The logarithm is defined so that logk(x)= a exactly when ka = x.

A useful interpretation in algorithmics is that logk(x) equals the number of
times we have to divide x by k before we reach the number 1. For example,
log2(32)= 5 because 5 divisions are needed:

32→ 16→ 8→ 4→ 2→ 1

Logarithms are often needed in the analysis of algorithms because many
efficient algorithms divide in half something at each step. Thus, we can estimate
the efficiency of those algorithms using the logarithm.

The logarithm of a product is

logk(ab)= logk(a)+ logk(b),

and consequently,
logk(xn)= n · logk(x).

In addition, the logarithm of a quotient is

logk

(a
b

)
= logk(a)− logk(b).

Another useful formula is
logu(x)= logk(x)

logk(u)
,

and using this, it is possible to calculate logarithms to any base if there is a way
to calculate logarithms to some fixed base.

The natural logarithm ln(x) of a number x is a logarithm whose base is
e ≈ 2,71828.

Another property of the logarithm is that the number of digits of a number x
in base b is blogb(x)+1c. For example, the representation of the number 123 in
base 2 is 1111011 and blog2(123)+1c = 7.

14

Chapter 2

Time complexity

The efficiency of algorithms is important in competitive programming. Usually,
it is easy to design an algorithm that solves the problem slowly, but the real
challenge is to invent a fast algorithm. If an algorithm is too slow, it will get only
partial points or no points at all.

The time complexity of an algorithm estimates how much time the algo-
rithm will use for some input. The idea is to represent the efficiency as an function
whose parameter is the size of the input. By calculating the time complexity, we
can estimate if the algorithm is good enough without implementing it.

2.1 Calculation rules

The time complexity of an algorithm is denoted O(· · ·) where the three dots
represent some function. Usually, the variable n denotes the input size. For
example, if the input is an array of numbers, n will be the size of the array, and if
the input is a string, n will be the length of the string.

Loops

The typical reason why an algorithm is slow is that it contains many loops that
go through the input. The more nested loops the algorithm contains, the slower
it is. If there are k nested loops, the time complexity is O(nk).

For example, the time complexity of the following code is O(n):

for (int i = 1; i <= n; i++) {
// code

}

Correspondingly, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

// code
}

}

15

Order of magnitude

A time complexity doesn’t tell the exact number of times the code inside a loop is
executed, but it only tells the order of magnitude. In the following examples, the
code inside the loop is executed 3n, n+5 and dn/2e times, but the time complexity
of each code is O(n).

for (int i = 1; i <= 3*n; i++) {
// code

}

for (int i = 1; i <= n+5; i++) {
// code

}

for (int i = 1; i <= n; i += 2) {
// code

}

As another example, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = i+1; j <= n; j++) {

// code
}

}

Phases

If the code consists of consecutive phases, the total time complexity is the largest
time complexity of a single phase. The reason for this is that the slowest phase is
usually the bottleneck of the code and the other phases are not important.

For example, the following code consists of three phases with time complexities
O(n), O(n2) and O(n). Thus, the total time complexity is O(n2).

for (int i = 1; i <= n; i++) {
// code

}
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
// code

}
}
for (int i = 1; i <= n; i++) {

// code
}

16

Several variables

Sometimes the time complexity depends on several variables. In this case, the
formula for the time complexity contains several variables.

For example, the time complexity of the following code is O(nm):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {

// code
}

}

Recursion

The time complexity of a recursive function depends on the number of times
the function is called and the time complexity of a single call. The total time
complexity is the product of these values.

For example, consider the following function:

void f(int n) {
if (n == 1) return;
f(n-1);

}

The call f(n) causes n function calls, and the time complexity of each call is O(1).
Thus, the total time complexity is O(n).

As another example, consider the following function:

void g(int n) {
if (n == 1) return;
g(n-1);
g(n-1);

}

In this case the function branches into two parts. Thus, the call g(n) causes the
following calls:

call amount
g(n) 1

g(n−1) 2
· · · · · ·

g(1) 2n−1

Based on this, the time complexity is

1+2+4+·· ·+2n−1 = 2n −1=O(2n).

17

2.2 Complexity classes

Typical complexity classes are:

O(1) The running time of a constant-time algorithm doesn’t depend on the
input size. A typical constant-time algorithm is a direct formula that
calculates the answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
reason for this is that the logarithm log2 n equals the number of times n
must be divided by 2 to produce 1.

O(
p

n) The running time of this kind of algorithm is between O(logn) and O(n).
A special feature of the square root is that

p
n = n/

p
n, so the square root

lies ”in the middle” of the input.

O(n) A linear algorithm goes through the input a constant number of times.
This is often the best possible time complexity because it is usually needed
to access each input element at least once before reporting the answer.

O(n logn) This time complexity often means that the algorithm sorts the input
because the time complexity of efficient sorting algorithms is O(n logn).
Another possibility is that the algorithm uses a data structure where the
time complexity of each operation is O(logn).

O(n2) A quadratic algorithm often contains two nested loops. It is possible to
go through all pairs of input elements in O(n2) time.

O(n3) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of input elements in O(n3) time.

O(2n) This time complexity often means that the algorithm iterates through all
subsets of the input elements. For example, the subsets of {1,2,3} are ;, {1},
{2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}.

O(n!) This time complexity often means that the algorithm iterates trough all
permutations of the input elements. For example, the permutations of
{1,2,3} are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

An algorithm is polynomial if its time complexity is at most O(nk) where k is
a constant. All the above time complexities except O(2n) and O(n!) are polynomial.
In practice, the constant k is usually small, and therefore a polynomial time
complexity roughly means that the algorithm is efficient.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems for
which no polynomial algorithm is known.

18

2.3 Estimating efficiency

By calculating the time complexity, it is possible to check before the implementa-
tion that an algorithm is efficient enough for the problem. The starting point for
the estimation is the fact that a modern computer can perform some hundreds of
millions of operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 105. If the time complexity is O(n2), the algorithm will perform
about (105)2 = 1010 operations. This should take some tens of seconds time, so
the algorithm seems to be too slow for solving the problem.

On the other hand, given the input size, we can try to guess the desired time
complexity of the algorithm that solves the problem. The following table contains
some useful estimates assuming that the time limit is one second.

input size (n) desired time complexity
n ≤ 1018 O(1) tai O(logn)
n ≤ 1012 O(

p
n)

n ≤ 106 O(n) tai O(n logn)
n ≤ 5000 O(n2)
n ≤ 500 O(n3)
n ≤ 25 O(2n)
n ≤ 10 O(n!)

For example, if the input size is n = 105, it is probably expected that the time
complexity of the algorithm should be O(n) or O(n logn). This information makes
it easier to design an algorithm because it rules out approaches that would yield
an algorithm with a slower time complexity.

Still, it is important to remember that a time complexity doesn’t tell every-
thing about the efficiency because it hides the constant factors. For example,
an algorithm that runs in O(n) time can perform n/2 or 5n operations. This has
an important effect on the actual running time of the algorithm.

2.4 Maximum subarray sum

There are often several possible algorithms for solving a problem with different
time complexities. This section discusses a classic problem that has a straightfor-
ward O(n3) solution. However, by designing a better algorithm it is possible to
solve the problem in O(n2) time and even in O(n) time.

Given an array of n integers x1, x2, . . . , xn, our task is to find the maximum
subarray sum, i.e., the largest possible sum of numbers in a contiguous region
in the array. The problem is interesting because there may be negative numbers
in the array. For example, in the array

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

19

the following subarray produces the maximum sum 10:

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

Solution 1

A straightforward solution for the problem is to go through all possible ways to
select a subarray, calculate the sum of numbers in each subarray and maintain
the maximum sum. The following code implements this algorithm:

int p = 0;
for (int a = 1; a <= n; a++) {

for (int b = a; b <= n; b++) {
int s = 0;
for (int c = a; c <= b; c++) {

s += x[c];
}
p = max(p,s);

}
}
cout << p << "\n";

The code assumes that the numbers are stored in array x with indices 1 . . .n.
Variables a and b select the first and last number in the subarray, and the sum of
the subarray is calculated to variable s. Variable p contains the maximum sum
found during the search.

The time complexity of the algorithm is O(n3) because it consists of three
nested loops and each loop contains O(n) steps.

Solution 2

It is easy to make the first solution more efficient by removing one loop. This is
possible by calculating the sum at the same time when the right border of the
subarray moves. The result is the following code:

int p = 0;
for (int a = 1; a <= n; a++) {

int s = 0;
for (int b = a; b <= n; b++) {

s += x[b];
p = max(p,s);

}
}
cout << p << "\n";

After this change, the time complexity is O(n2).

20

Solution 3

Surprisingly, it is possible to solve the problem in O(n) time which means that
we can remove one more loop. The idea is to calculate for each array index the
maximum subarray sum that ends to that index. After this, the answer for the
problem is the maximum of those sums.

Condider the subproblem of finding the maximum subarray for a fixed ending
index k. There are two possibilities:

1. The subarray only contains the element at index k.

2. The subarray consists of a subarray that ends to index k−1, followed by
the element at index k.

Our goal is to find a subarray with maximum sum, so in case 2 the subarray
that ends to index k−1 should also have the maximum sum. Thus, we can solve
the problem efficiently when we calculate the maximum subarray sum for each
ending index from left to right.

The following code implements the solution:

int p = 0, s = 0;
for (int k = 1; k <= n; k++) {

s = max(x[k],s+x[k]);
p = max(p,s);

}
cout << p << "\n";

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to access all array elements at least once.

Efficiency comparison

It is interesting to study how efficient the algorithms are in practice. The follow-
ing table shows the running times of the above algorithms for different values of
n in a modern computer.

In each test, the input was generated randomly. The time needed for reading
the input was not measured.

array size n solution 1 solution 2 solution 3
102 0,0 s 0,0 s 0,0 s
103 0,1 s 0,0 s 0,0 s
104 > 10,0 s 0,1 s 0,0 s
105 > 10,0 s 5,3 s 0,0 s
106 > 10,0 s > 10,0 s 0,0 s
107 > 10,0 s > 10,0 s 0,0 s

The comparison shows that all algorithms are efficient when the input size
is small, but larger inputs bring out remarkable differences in running times of

21

the algorithms. The O(n3) time solution 1 becomes slower when n = 103, and the
O(n2) time solution 2 becomes slower when n = 104. Only the O(n) time solution
3 solves even the largest inputs instantly.

22

Chapter 3

Sorting

Sorting is a fundamental algorithm design problem. In addition, many efficient
algorithms use sorting as a subroutine, because it is often easier to process data
if the elements are in a sorted order.

For example, the question ”does the array contain two equal elements?” is
easy to solve using sorting. If the array contains two equal elements, they will
be next to each other after sorting, so it is easy to find them. Also the question
”what is the most frequent element in the array?” can be solved similarly.

There are many algorithms for sorting, that are also good examples of al-
gorithm design techniques. The efficient general sorting algorithms work in
O(n logn) time, and many algorithms that use sorting as a subroutine also have
this time complexity.

3.1 Sorting theory
The basic problem in sorting is as follows:

Given an array that contains n elements, your task is to sort the elements in
increasing order.

For example, the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

will be as follows after sorting:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

O(n2) algorithms

Simple algorithms for sorting an array work in O(n2) time. Such algorithms are
short and usually consist of two nested loops. A famous O(n2) time algorithm

23

for sorting is bubble sort where the elements ”bubble” forward in the array
according to their values.

Bubble sort consists of n−1 rounds. On each round, the algorithm iterates
through the elements in the array. Whenever two successive elements are found
that are not in correct order, the algorithm swaps them. The algorithm can be
implemented as follows for array t[1],t[2], . . . ,t[n]:

for (int i = 1; i <= n-1; i++) {
for (int j = 1; j <= n-i; j++) {

if (t[j] > t[j+1]) swap(t[j],t[j+1]);
}

}

After the first round of the algorithm, the largest element is in the correct
place, after the second round the second largest element is in the correct place,
etc. Thus, after n−1 rounds, all elements will be sorted.

For example, in the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

the first round of bubble sort swaps elements as follows:

1 3 2 8 9 2 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 9 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 9 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 6 9

1 2 3 4 5 6 7 8

Inversions

Bubble sort is an example of a sorting algorithm that always swaps successive
elements in the array. It turns out that the time complexity of this kind of an

24

algorithm is always at least O(n2) because in the worst case, O(n2) swaps are
required for sorting the array.

A useful concept when analyzing sorting algorithms is an inversion. It is a
pair of elements (t[a],t[b]) in the array such that a < b and t[a]> t[b], i.e., they
are in wrong order. For example, in the array

1 2 2 6 3 5 9 8

1 2 3 4 5 6 7 8

the inversions are (6,3), (6,5) and (9,8). The number of inversions indicates how
sorted the array is. An array is completely sorted when there are no inversions.
On the other hand, if the array elements are in reverse order, the number of
inversions is maximum:

1+2+·· ·+ (n−1)= n(n−1)
2

=O(n2)

Swapping successive elements that are in wrong order removes exactly one
inversion from the array. Thus, if a sorting algorithm can only swap successive
elements, each swap removes at most one inversion and the time complexity of
the algorithm is at least O(n2).

O(n logn) algorithms

It is possible to sort an array efficiently in O(n logn) time using an algorithm that
is not limited to swapping successive elements. One such algorithm is mergesort
that sorts an array recursively by dividing it into smaller subarrays.

Mergesort sorts the subarray [a,b] as follows:

1. If a = b, don’t do anything because the subarray is already sorted.

2. Calculate the index of the middle element: k = b(a+b)/2c.
3. Recursively sort the subarray [a,k].

4. Recursively sort the subarray [k+1,b].

5. Merge the sorted subarrays [a,k] and [k+1,b] into a sorted subarray [a,b].

Mergesort is an efficient algorithm because it halves the size of the subarray
at each step. The recursion consists of O(logn) levels, and processing each level
takes O(n) time. Merging the subarrays [a,k] and [k+1,b] is possible in linear
time because they are already sorted.

For example, consider sorting the following array:

1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

The array will be divided into two subarrays as follows:

25

1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

Then, the subarrays will be sorted recursively as follows:

1 2 3 6 2 5 8 9

1 2 3 4 5 6 7 8

Finally, the algorithm merges the sorted subarrays and creates the final
sorted array:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

Sorting lower bound

Is it possible to sort an array faster than in O(n logn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by examining the sort-
ing as a process where each comparison of two elements gives more information
about the contents of the array. The process creates the following tree:

x < y?

x < y? x < y?

x < y? x < y? x < y? x < y?

Here ”x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to order the array, a total of n! ways. For this reason, the
height of the tree must be at least

log2(n!)= log2(1)+ log2(2)+·· ·+ log2(n).

We get an lower bound for this sum by choosing last n/2 elements and changing
the value of each element to log2(n/2). This yields an estimate

log2(n!)≥ (n/2) · log2(n/2),

so the height of the tree and the minimum possible number of steps in an sorting
algorithm in the worst case is at least n logn.

26

Counting sort

The lower bound n logn doesn’t apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is
counting sort that sorts an array in O(n) time assuming that every element in
the array is an integer between 0 . . . c where c is a small constant.

The algorithm creates a bookkeeping array whose indices are elements in the
original array. The algorithm iterates through the original array and calculates
how many times each element appears in the array.

For example, the array

1 3 6 9 9 3 5 9

1 2 3 4 5 6 7 8

produces the following bookkeeping array:

1 0 2 0 1 1 0 0 3

1 2 3 4 5 6 7 8 9

For example, the value of element 3 in the bookkeeping array is 2, because
the element 3 appears two times in the original array (indices 2 and 6).

The construction of the bookkeeping array takes O(n) time. After this, the
sorted array can be created in O(n) time because the amount of each element
can be retrieved from the bookkeeping array. Thus, the total time complexity of
counting sort is O(n).

Counting sort is a very efficient algorithm but it can only be used when the
constant c is so small that the array elements can be used as indices in the
bookkeeping array.

3.2 Sorting in C++
It is almost never a good idea to use an own implementation of a sorting algorithm
in a contest, because there are good implementations available in programming
languages. For example, the C++ standard library contains the function sort
that can be easily used for sorting arrays and other data structures.

There are many benefits in using a library function. First, it saves time
because there is no need to implement the function. In addition, the library
implementation is certainly correct and efficient: it is not probable that a home-
made sorting function would be better.

In this section we will see how to use the C++ sort function. The following
code sorts the numbers in vector t in increasing order:

vector<int> v = {4,2,5,3,5,8,3};
sort(v.begin(),v.end());

After the sorting, the contents of the vector will be [2,3,3,4,5,5,8]. The default
sorting order in increasing, but a reverse order is possible as follows:

27

sort(v.rbegin(),v.rend());

A regular array can be sorted as follows:

int n = 7; // array size
int t[] = {4,2,5,3,5,8,3};
sort(t,t+n);

The following code sorts the string s:

string s = "monkey";
sort(s.begin(), s.end());

Sorting a string means that the characters in the string are sorted. For example,
the string ”monkey” becomes ”ekmnoy”.

Comparison operator

The function sort requires that a comparison operator is defined for the data
type of the elements to be sorted. During the sorting, this operator will be used
whenever it is needed to find out the order of two elements.

Most C++ data types have a built-in comparison operator and elements of
those types can be sorted automatically. For example, numbers are sorted accord-
ing to their values and strings are sorted according to alphabetical order.

Pairs (pair) are sorted primarily by the first element (first). However, if
the first elements of two pairs are equal, they are sorted by the second element
(second):

vector<pair<int,int>> v;
v.push_back({1,5});
v.push_back({2,3});
v.push_back({1,2});
sort(v.begin(), v.end());

After this, the order of the pairs is (1,2), (1,5) and (2,3).
Correspondingly, tuples (tuple) are sorted primarily by the first element,

secondarily by the second element, etc.:

vector<tuple<int,int,int>> v;
v.push_back(make_tuple(2,1,4));
v.push_back(make_tuple(1,5,3));
v.push_back(make_tuple(2,1,3));
sort(v.begin(), v.end());

After this, the order of the tuples is (1,5,3), (2,1,3) and (2,1,4).

28

User-defined structs

User-defined structs do not have a comparison operator automatically. The
operator should be defined inside the struct as a function operator< whose
parameter is another element of the same type. The operator should return true
if the element is smaller than the parameter, and false otherwise.

For example, the following struct P contains the x and y coordinate of a point.
The comparison operator is defined so that the points are sorted primarily by the
x coordinate and secondarily by the y coordinate.

struct P {
int x, y;
bool operator<(const P &p) {

if (x != p.x) return x < p.x;
else return y < p.y;

}
};

Comparison function

It is also possible to give an external comparison function to the sort function
as a callback function. For example, the following comparison function sorts
strings primarily by length and secondarily by alphabetical order:

bool cmp(string a, string b) {
if (a.size() != b.size()) return a.size() < b.size();
return a < b;

}

Now a vector of strings can be sorted as follows:

sort(v.begin(), v.end(), cmp);

3.3 Binary search

A general method for searching for an element in an array is to use a for loop
that iterates through all elements in the array. For example, the following code
searches for an element x in array t:

for (int i = 1; i <= n; i++) {
if (t[i] == x) // x found at index i

}

The time complexity of this approach is O(n) because in the worst case, we
have to check all elements in the array. If the array can contain any elements,

29

this is also the best possible approach because there is no additional information
available where in the array we should search for the element x.

However, if the array is sorted, the situation is different. In this case it is
possible to perform the search much faster, because the order of the elements in
the array guides us. The following binary search algorithm efficiently searches
for an element in a sorted array in O(logn) time.

Method 1

The traditional way to implement binary search resembles looking for a word in
a dictionary. At each step, the search halves the active region in the array, until
the desired element is found, or it turns out that there is no such element.

First, the search checks the middle element in the array. If the middle element
is the desired element, the search terminates. Otherwise, the search recursively
continues to the left half or to the right half of the array, depending on the value
of the middle element.

The above idea can be implemented as follows:

int a = 1, b = n;
while (a <= b) {

int k = (a+b)/2;
if (t[k] == x) // x found at index k
if (t[k] > x) b = k-1;
else a = k+1;

}

The algorithm maintains a range a . . .b that corresponds to the active region
in the array. Initially, the range is 1 . . .n, the whole array. The algorithm halves
the size of the range at each step, so the time complexity is O(logn).

Method 2

An alternative method for implementing binary search is based on a more efficient
way to iterate through the elements in the array. The idea is to make jumps and
slow the speed when we get closer to the desired element.

The search goes through the array from the left to the right, and the initial
jump length is n/2. At each step, the jump length will be halved: first n/4, then
n/8, n/16, etc., until finally the length is 1. After the jumps, either the desired
element has been found or we know that it doesn’t exist in the array.

The following code implements the above idea:

int k = 1;
for (int b = n/2; b >= 1; b /= 2) {

while (k+b <= n && t[k+b] <= x) k += b;
}
if (t[k] == x) // x was found at index k

30

Variable k is the position in the array, and variable b is the jump length. If
the array contains the element x, the index of the element will be in variable k
after the search. The time complexity of the algorithm is O(logn), because the
code in the while loop is performed at most twice for each jump length.

Finding the smallest solution

In practice, it is seldom needed to implement binary search for array search,
because we can use the standard library instead. For example, the C++ functions
lower_bound and upper_bound implement binary search, and the data structure
set maintains a set of elements with O(logn) time operations.

However, an important use for binary search is to find a position where the
value of a function changes. Suppose that we wish to find the smallest value k
that is a valid solution for a problem. We are given a function ok(x) that returns
true if x is a valid solution and false otherwise. In addition, we know that ok(x)
is false when x < k and true when x ≥ k. The situation looks as follows:

x 0 1 · · · k−1 k k+1 · · ·
ok(x) false false · · · false true true · · ·

The value k can be found using binary search:

int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (!ok(x+b)) x += b;
}
int k = x+1;

The search finds the largest value of x for which ok(x) is false. Thus, the
next value k = x+1 is the smallest possible value for which ok(k) is true. The
initial jump length z has to be large enough, for example some value for which
we know beforehand that ok(z) is true.

The algorithm calls the function ok O(log z) times, so the total time complexity
depends on the function ok. For example, if the function works in O(n) time, the
total time complexity becomes O(n log z).

Finding the maximum value

Binary search can also be used for finding the maximum value for a function that
is first increasing and then decreasing. Our task is to find a value k such that

• f (x)< f (x+1) when x < k, and

• f (x)> f (x+1) when x >= k.

The idea is to use binary search for finding the largest value of x for which
f (x)< f (x+1). This implies that k = x+1 because f (x+1)> f (x+2). The following
code implements the search:

31

int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (f(x+b) < f(x+b+1)) x += b;
}
int k = x+1;

Note that unlike in the regular binary search, here it is not allowed that
successive values of the function are equal. In this case it would not be possible
to know how to continue the search.

32

Part II

Graph algorithms

33

Part III

Advanced topics

35

Index

arithmetic sum, 10

binary search, 29
bubble sort, 23

comparison function, 29
comparison operator, 28
complement, 11
complexity classes, 18
conjuction, 12
constant factor, 19
constant-time algorithm, 18
counting sort, 27
cubic algorithm, 18

difference, 11
disjunction, 12

equivalence, 12

factorial, 13
Fibonacci number, 13
floating point number, 7

geometric sum, 10

harmonic sum, 11

implication, 12
input and output, 4
integer, 6
intersection, 11
inversion, 24

linear algorithm, 18
logarithm, 14
logarithmic algorithm, 18
logic, 12

macro, 9
maximum subarray sum, 19
merge sort, 25

modular arithmetic, 6

natural logarithm, 14
negation, 12
NP-hard problem, 18

pair, 28
polynomial algorithm, 18
predicate, 12
programming language, 3

quadratic algorithm, 18
quantifier, 12

remainder, 6

set, 11
set theory, 11
sort, 27
sorting, 23
subset, 11

time complexity, 15
tuple, 28
typedef, 8

union, 11
universal set, 11

37

	Preface
	I Basic techniques
	Introduction
	Programming languages
	Input and output
	Handling numbers
	Shortening code
	Mathematics

	Time complexity
	Calculation rules
	Complexity classes
	Estimating efficiency
	Maximum subarray sum

	Sorting
	Sorting theory
	Sorting in C++
	Binary search

	II Graph algorithms
	III Advanced topics

