
Competitive Programmer’s Handbook

Antti Laaksonen

January 3, 2017



ii



Contents

Preface v

I Basic techniques 1

1 Introduction 3
1.1 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Handling numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Shortening code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Time complexity 15
2.1 Calculation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Estimating efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Maximum subarray sum . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Sorting 23
3.1 Sorting theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Sorting in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Binary search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Data structures 33
4.1 Dynamic array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Set structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Map structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Iterators and ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Other structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Comparison to sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Complete search 45
5.1 Generating subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Generating permutations . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Pruning the search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Meet in the middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



6 Greedy algorithms 55
6.1 Coin problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Tasks and deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Minimizing sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Data compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Dynamic programming 63
7.1 Coin problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Longest increasing subsequence . . . . . . . . . . . . . . . . . . . . . 68
7.3 Path in a grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Edit distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

II Graph algorithms 75

III Advanced topics 77

iv



Preface

The purpose of this book is to give you a thorough introduction to competitive pro-
gramming. The book assumes that you already know the basics of programming,
but previous background on competitive programming is not needed.

The book is especially intended for high school students who want to learn
algorithms and possibly participate in the International Olympiad in Informatics
(IOI). The book is also suitable for university students and anybody else interested
in competitive programming.

It takes a long time to become a good competitive programmer, but it is also
an opportunity to learn a lot. You can be sure that you will learn a great deal
about algorithms if you spend time reading the book and solving exercises.

The book is under continuous development. You can always send feedback
about the book to ahslaaks@cs.helsinki.fi.

v



vi



Part I

Basic techniques

1





Chapter 1

Introduction

Competitive programming combines two topics: (1) design of algorithms and (2)
implementation of algorithms.

The design of algorithms consists of problem solving and mathematical
thinking. Skills for analyzing problems and solving them using creativity is
needed. An algorithm for solving a problem has to be both correct and efficient,
and the core of the problem is often how to invent an efficient algorithm.

Theoretical knowledge of algorithms is very important to competitive pro-
grammers. Typically, a solution for a problem is a combination of well-known
techniques and new insights. The techniques that appear in competitive pro-
gramming also form the basis for the scientific research of algorithms.

The implementation of algorithms requires good programming skills. In
competitive programming, the solutions are graded by testing an implemented
algorithm using a set of test cases. Thus, it is not enough that the idea of the
algorithm is correct, but the implementation has to be correct as well.

Good coding style in contests is straightforward and concise. The solutions
should be written quickly, because there is not much time available. Unlike in
traditional software engineering, the solutions are short (usually at most some
hundreds of lines) and it is not needed to maintain them after the contest.

1.1 Programming languages

At the moment, the most popular programming languages in contests are C++,
Python and Java. For example, in Google Code Jam 2016, among the best 3,000
participants, 73 % used C++, 15 % used Python and 10 % used Java1. Some
participants also used several languages.

Many people think that C++ is the best choice for a competitive programmer,
and C++ is nearly always available in contest systems. The benefits in using C++
are that it is a very efficient language and its standard library contains a large
collection of data structures and algorithms.

On the other hand, it is good to master several languages and know the
benefits of them. For example, if big integers are needed in the problem, Python

1https://www.go-hero.net/jam/16

3

https://www.go-hero.net/jam/16


can be a good choice because it contains a built-in library for handling big
integers. Still, usually the goal is to write the problems so that the use of a
specific programming language is not an unfair advantage in the contest.

All examples in this book are written in C++, and the data structures and
algorithms in the standard library are often used. The book follows the C++11
standard, that can be used in most contests nowadays. If you can’t program in
C++ yet, now it is a good time to start learning.

C++ template

A typical C++ template for competitive programming looks like this:

#include <bits/stdc++.h>

using namespace std;

int main() {
// solution comes here

}

The #include line at the beginning of the code is a feature in the g++ compiler
that allows to include the whole standard library. Thus, it is not needed to
separately include libraries such as iostream, vector and algorithm, but they
are available automatically.

The using line determines that the classes and functions of the standard
library can be used directly in the code. Without the using line we should write,
for example, std::cout, but now it is enough to write cout.

The code can be compiled using the following command:

g++ -std=c++11 -O2 -Wall code.cpp -o code

This command produces a binary file code from the source code code.cpp.
The compiler obeys the C++11 standard (-std=c++11), optimizes the code (-O2)
and shows warnings about possible errors (-Wall).

1.2 Input and output

In most contests, standard streams are used for reading input and writing output.
In C++, the standard streams are cin for input and cout for output. In addition,
the C functions scanf and printf can be used.

The input for the program usually consists of numbers and strings that are
separated with spaces and newlines. They can be read from the cin stream as
follows:

int a, b;
string x;
cin >> a >> b >> x;

4



This kind of code always works, assuming that there is at least one space or
one newline between each element in the input. For example, the above code
accepts both the following inputs:

123 456 apina

123 456
apina

The cout stream is used for output as follows:

int a = 123, b = 456;
string x = "apina";
cout << a << " " << b << " " << x << "\n";

Handling input and output is sometimes a bottleneck in the program. The
following lines at the beginning of the code make input and output more efficient:

ios_base::sync_with_stdio(0);
cin.tie(0);

Note that the newline "\n" works faster than endl, becauses endl always
causes a flush operation.

The C functions scanf and printf are an alternative to the C++ standard
streams. They are usually a bit faster, but they are also more difficult to use. The
following code reads two integers from the input:

int a, b;
scanf("%d %d", &a, &b);

The following code prints two integers:

int a = 123, b = 456;
printf("%d %d\n", a, b);

Sometimes the program should read a whole line from the input, possibly
with spaces. This can be accomplished using the getline function:

string s;
getline(cin, s);

If the amount of data is unknown, the following loop can be handy:

while (cin >> x) {
// koodia

}

This loop reads elements from the input one after another, until there is no more
data available in the input.

5



In some contest systems, files are used for input and output. An easy solution
for this is to write the code as usual using standard streams, but add the following
lines to the beginning of the code:

freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);

After this, the code reads the input from the file ”input.txt” and writes the output
to the file ”output.txt”.

1.3 Handling numbers

Integers

The most popular integer type in competitive programming is int. This is a
32-bit type with value range −231 . . .231 −1, i.e., about −2 ·109 . . .2 ·109. If the
type int is not enough, the 64-bit type long long can be used, with value range
−263 . . .263 −1, i.e., about −9 ·1018 . . .9 ·1018.

The following code defines a long long variable:

long long x = 123456789123456789LL;

The suffix LL means that the type of the number is long long.
A typical error when using the type long long is that the type int is still

used somewhere in the code. For example, the following code contains a subtle
error:

int a = 123456789;
long long b = a*a;
cout << b << "\n"; // -1757895751

Even though the variable b is of type long long, both numbers in the expres-
sion a*a are of type int and the result is also of type int. Because of this, the
variable b will contain a wrong result. The problem can be solved by changing
the type of a to long long or by changing the expression to (long long)a*a.

Usually, the problems are written so that the type long long is enough. Still,
it is good to know that the g++ compiler also features an 128-bit type __int128_t
with value range −2127 . . .2127 −1, i.e., −1038 . . .1038. However, this type is not
available in all contest systems.

Modular arithmetic

We denote by x mod m the remainder when x is divided by m. For example,
17 mod 5= 2, because 17= 3 ·5+2.

Sometimes, the answer for a problem is a very big integer but it is enough
to print it ”modulo m”, i.e., the remainder when the answer is divided by m (for

6



example, ”modulo 109 +7”). The idea is that even if the actual answer may be
very big, it is enough to use the types int and long long.

An important property of the remainder is that in addition, subtraction and
multiplication, the remainder can be calculated before the operation:

(a+b) mod m = (a mod m+b mod m) mod m
(a−b) mod m = (a mod m−b mod m) mod m
(a ·b) mod m = (a mod m ·b mod m) mod m

Thus, we can calculate the remainder after every operation and the numbers
will never become too large.

For example, the following code calculates n!, the factorial of n, modulo m:

long long x = 1;
for (int i = 2; i <= n i++) {

x = (x*i)%m;
}
cout << x << "\n";

Usually, the answer should be always given so that the remainder is between
0 . . .m−1. However, in C++ and other languages, the remainder of a negative
number can be negative. An easy way to make sure that this will not happen is
to first calculate the remainder as usual and then add m if the result is negative:

x = x%m;
if (x < 0) x += m;

However, this is only needed when there are subtractions in the code and the
remainder may become negative.

Floating point numbers

The usual floating point types in competitive programming are the 64-bit double
and, as an extension in the g++ compiler, the 80-bit long double. In most cases,
double is enough, but long double is more accurate.

The required precision of the answer is usually given. The easiest way is to
use the printf function that can be given the number of decimal places. For
example, the following code prints the value of x with 9 decimal places:

printf("%.9f\n", x);

A difficulty when using floating point numbers is that some numbers cannot
be represented accurately, but there will be rounding errors. For example, the
result of the following code is surprising:

double x = 0.3*3+0.1;
printf("%.20f\n", x); // 0.99999999999999988898

7



Because of a rounding error, the value of x is a bit less than 1, while the
correct value would be 1.

It is risky to compare floating point numbers with the == operator, because
it is possible that the values should be equal but they are not due to rounding
errors. A better way to compare floating point numbers is to assume that two
numbers are equal if the difference between them is ε, where ε is a small number.

In practice, the numbers can be compared as follows (ε= 10−9):

if (abs(a-b) < 1e-9) {
// a and b are equal

}

Note that while floating point numbers are inaccurate, integers up to a certain
limit can be still represented accurately. For example, using double, it is possible
to accurately represent all integers having absolute value at most 253.

1.4 Shortening code

Short code is ideal in competitive programming, because the algorithm should be
implemented as fast as possible. Because of this, competitive programmers often
define shorter names for datatypes and other parts of code.

Type names

Using the command typedef it is possible to give a shorter name to a datatype.
For example, the name long long is long, so we can define a shorter name ll:

typedef long long ll;

After this, the code

long long a = 123456789;
long long b = 987654321;
cout << a*b << "\n";

can be shortened as follows:

ll a = 123456789;
ll b = 987654321;
cout << a*b << "\n";

The command typedef can also be used with more complex types. For exam-
ple, the following code gives the name vi for a vector of integers, and the name
pi for a pair that contains two integers.

typedef vector<int> vi;
typedef pair<int,int> pi;

8



Macros

Another way to shorten the code is to define macros. A macro means that certain
strings in the code will be changed before the compilation. In C++, macros are
defined using the command #define.

For example, we can define the following macros:

#define F first
#define S second
#define PB push_back
#define MP make_pair

After this, the code

v.push_back(make_pair(y1,x1));
v.push_back(make_pair(y2,x2));
int d = v[i].first+v[i].second;

can be shortened as follows:

v.PB(MP(y1,x1));
v.PB(MP(y2,x2));
int d = v[i].F+v[i].S;

It is also possible to define a macro with parameters which makes it possible
to shorten loops and other structures in the code. For example, we can define the
following macro:

#define REP(i,a,b) for (int i = a; i <= b; i++)

After this, the code

for (int i = 1; i <= n; i++) {
haku(i);

}

can be shortened as follows:

REP(i,1,n) {
haku(i);

}

1.5 Mathematics

Mathematics plays an important role in competitive programming, and it is not
possible to become a successful competitive programmer without good skills in
mathematics. This section covers some important mathematical concepts and
formulas that are needed later in the book.

9



Sum formulas

Each sum of the form
n∑

x=1
xk = 1k +2k +3k + . . .+nk

where k is a positive integer, has a closed-form formula that is a polynomial of
degree k+1. For example,

n∑
x=1

x = 1+2+3+ . . .+n = n(n+1)
2

and
n∑

x=1
x2 = 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)

6
.

An arithmetic sum is a sum where the difference between any two consecu-
tive numbers is constant. For example,

3+7+11+15

is an arithmetic sum with constant 4. An arithmetic sum can be calculated using
the formula

n(a+b)
2

where a is the first number, b is the last number and n is the amount of numbers.
For example,

3+7+11+15= 4 · (3+15)
2

= 36.

The formula is based on the fact that the sum consists of n numbers and the
value of each number is (a+b)/2 on average.

A geometric sum is a sum where the ratio between any two consecutive
numbers is constant. For example,

3+6+12+24

is a geometric sum with constant 2. A geometric sum can be calculated using the
formula

bx−a
x−1

where a is the first number, b is the last number and the ratio between consecu-
tive numbers is x. For example,

3+6+12+24= 24 ·2−3
2−1

= 45.

This formula can be derived as follows. Let

S = a+ax+ax2 +·· ·+b.

By multiplying both sides by x, we get

xS = ax+ax2 +ax3 +·· ·+bx,

10



and solving the equation
xS−S = bx−a.

yields the formula.
A special case of a geometric sum is the formula

1+2+4+8+ . . .+2n−1 = 2n −1.

A harmonic sum is a sum of the form
n∑

x=1

1
x
= 1+ 1

2
+ 1

3
+ . . .+ 1

n
.

An upper bound for the harmonic sum is log2(n)+1. The reason for this is
that we can change each term 1/k so that k becomes a power of two that doesn’t
exceed k. For example, when n = 6, we can estimate the sum as follows:

1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
≤ 1+ 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

4
.

This upper bound consists of log2(n)+1 parts (1, 2 ·1/2, 4 ·1/4, etc.), and the sum
of each part is at most 1.

Set theory

A set is a collection of elements. For example, the set

X = {2,4,7}

contains elements 2, 4 and 7. The symbol ; denotes an empty set, and |S| denotes
the size of set S, i.e., the number of elements in the set. For example, in the
above set, |X | = 3.

If set S contains element x, we write x ∈ S, and otherwise we write x ∉ S. For
example, in the above set

4 ∈ X and 5 ∉ X .

New sets can be constructed as follows using set operations:

• The intersection A∩B consists of elements that are both in A and B. For
example, if A = {1,2,5} and B = {2,4}, then A∩B = {2}.

• The union A ∪B consists of elements that are in A or B or both. For
example, if A = {3,7} and B = {2,3,8}, then A∪B = {2,3,7,8}.

• The complement Ā consists of elements that are not in A. The interpre-
tation of a complement depends on the universal set that contains all
possible elements. For example, if A = {1,2,5,7} and the universal set is
P = {1,2, . . . ,10}, then Ā = {3,4,6,8,9,10}.

• The difference A \ B = A∩ B̄ consists of elements that are in A but not
in B. Note that B can contain elements that are not in A. For example, if
A = {2,3,7,8} and B = {3,5,8}, then A \ B = {2,7}.

If each element of A also belongs to S, we say that A is a subset of S, denoted
by A ⊂ S. Set S always has 2|S| subsets, including the empty set. For example,
the subsets of the set {2,4,7} are

11



;, {2}, {4}, {7}, {2,4}, {2,7}, {4,7} ja {2,4,7}.

Often used sets are

• N (natural numbers),
• Z (integers),
• Q (rational numbers) and
• R (real numbers).

The set N of natural numbers can be defined in two ways, depending on the
situation: either N= {0,1,2, . . .} or N= {1,2,3, ...}.

We can also construct a set using a rule of the form

{ f (n) : n ∈ S},

where f (n) is some function. This set contains all elements f (n) where n is an
element in S. For example, the set

X = {2n : n ∈Z}

contains all even integers.

Logic

The value of a logical expression is either true (1) or false (0). The most impor-
tant logical operators are ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒
(implication) and ⇔ (equivalence). The following table shows the meaning of
the operators:

A B ¬A ¬B A∧B A∨B A ⇒ B A ⇔ B
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 1

The negation ¬A reverses the value of an expression. The expression A∧B is
true if both A and B are true, and the expression A∨B is true if A or B or both
are true. The expression A ⇒ B is true if whenever A is true, also B is true. The
expression A ⇔ B is true if A and B are both true or both false.

A predicate is an expression that is true or false depending on its parameters.
Predicates are usually denoted by capital letters. For example, we can define
a predicate P(x) that is true exactly when x is a prime number. Using this
definition, P(7) is true but P(8) is false.

A quantifier connects a logical expression to elements in a set. The most
important quantifiers are ∀ (for all) and ∃ (there is). For example,

∀x(∃y(y< x))

12



means that for each element x in the set, there is an element y in the set such
that y is smaller than x. This is true in the set of integers, but false in the set of
natural numbers.

Using the notation described above, we can express many kinds of logical
propositions. For example,

∀x((x > 2∧¬P(x))⇒ (∃a(∃b(x = ab∧a > 1∧b > 1))))

means that if a number x is larger than 2 and not a prime number, there are
numbers a and b that are larger than 1 and whose product is x. This proposition
is true in the set of integers.

Functions

The function bxc rounds the number x down to an integer, and the function dxe
rounds the number x up to an integer. For example,

b3/2c = 1 and d3/2e = 2.

The functions min(x1, x2, . . . , xn) and max(x1, x2, . . . , xn) return the smallest
and the largest of values x1, x2, . . . , xn. For example,

min(1,2,3)= 1 and max(1,2,3)= 3.

The factorial n! is defined

n∏
x=1

x = 1 ·2 ·3 · . . . ·n

or recursively
0! = 1
n! = n · (n−1)!

The Fibonacci numbers arise in several situations. They can be defined
recursively as follows:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)

The first Fibonacci numbers are

0,1,1,2,3,5,8,13,21,34,55, . . .

There is also a closed-form formula for calculating Fibonacci numbers:

f (n)= (1+p
5)n − (1−p

5)n

2n
p

5
.

13



Logarithm

The logarithm of a number x is denoted logk(x) where k is the base of the
logarithm. The logarithm is defined so that logk(x)= a exactly when ka = x.

A useful interpretation in algorithmics is that logk(x) equals the number of
times we have to divide x by k before we reach the number 1. For example,
log2(32)= 5 because 5 divisions are needed:

32→ 16→ 8→ 4→ 2→ 1

Logarithms are often needed in the analysis of algorithms because many
efficient algorithms divide in half something at each step. Thus, we can estimate
the efficiency of those algorithms using the logarithm.

The logarithm of a product is

logk(ab)= logk(a)+ logk(b),

and consequently,
logk(xn)= n · logk(x).

In addition, the logarithm of a quotient is

logk

(a
b

)
= logk(a)− logk(b).

Another useful formula is
logu(x)= logk(x)

logk(u)
,

and using this, it is possible to calculate logarithms to any base if there is a way
to calculate logarithms to some fixed base.

The natural logarithm ln(x) of a number x is a logarithm whose base is
e ≈ 2,71828.

Another property of the logarithm is that the number of digits of a number x
in base b is blogb(x)+1c. For example, the representation of the number 123 in
base 2 is 1111011 and blog2(123)+1c = 7.

14



Chapter 2

Time complexity

The efficiency of algorithms is important in competitive programming. Usually,
it is easy to design an algorithm that solves the problem slowly, but the real
challenge is to invent a fast algorithm. If an algorithm is too slow, it will get only
partial points or no points at all.

The time complexity of an algorithm estimates how much time the algo-
rithm will use for some input. The idea is to represent the efficiency as an function
whose parameter is the size of the input. By calculating the time complexity, we
can estimate if the algorithm is good enough without implementing it.

2.1 Calculation rules

The time complexity of an algorithm is denoted O(· · · ) where the three dots
represent some function. Usually, the variable n denotes the input size. For
example, if the input is an array of numbers, n will be the size of the array, and if
the input is a string, n will be the length of the string.

Loops

The typical reason why an algorithm is slow is that it contains many loops that
go through the input. The more nested loops the algorithm contains, the slower
it is. If there are k nested loops, the time complexity is O(nk).

For example, the time complexity of the following code is O(n):

for (int i = 1; i <= n; i++) {
// code

}

Correspondingly, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

// code
}

}

15



Order of magnitude

A time complexity doesn’t tell the exact number of times the code inside a loop is
executed, but it only tells the order of magnitude. In the following examples, the
code inside the loop is executed 3n, n+5 and dn/2e times, but the time complexity
of each code is O(n).

for (int i = 1; i <= 3*n; i++) {
// code

}

for (int i = 1; i <= n+5; i++) {
// code

}

for (int i = 1; i <= n; i += 2) {
// code

}

As another example, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = i+1; j <= n; j++) {

// code
}

}

Phases

If the code consists of consecutive phases, the total time complexity is the largest
time complexity of a single phase. The reason for this is that the slowest phase is
usually the bottleneck of the code and the other phases are not important.

For example, the following code consists of three phases with time complexities
O(n), O(n2) and O(n). Thus, the total time complexity is O(n2).

for (int i = 1; i <= n; i++) {
// code

}
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
// code

}
}
for (int i = 1; i <= n; i++) {

// code
}

16



Several variables

Sometimes the time complexity depends on several variables. In this case, the
formula for the time complexity contains several variables.

For example, the time complexity of the following code is O(nm):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {

// code
}

}

Recursion

The time complexity of a recursive function depends on the number of times
the function is called and the time complexity of a single call. The total time
complexity is the product of these values.

For example, consider the following function:

void f(int n) {
if (n == 1) return;
f(n-1);

}

The call f(n) causes n function calls, and the time complexity of each call is O(1).
Thus, the total time complexity is O(n).

As another example, consider the following function:

void g(int n) {
if (n == 1) return;
g(n-1);
g(n-1);

}

In this case the function branches into two parts. Thus, the call g(n) causes the
following calls:

call amount
g(n) 1

g(n−1) 2
· · · · · ·

g(1) 2n−1

Based on this, the time complexity is

1+2+4+·· ·+2n−1 = 2n −1=O(2n).

17



2.2 Complexity classes

Typical complexity classes are:

O(1) The running time of a constant-time algorithm doesn’t depend on the
input size. A typical constant-time algorithm is a direct formula that
calculates the answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
reason for this is that the logarithm log2 n equals the number of times n
must be divided by 2 to produce 1.

O(
p

n) The running time of this kind of algorithm is between O(logn) and O(n).
A special feature of the square root is that

p
n = n/

p
n, so the square root

lies ”in the middle” of the input.

O(n) A linear algorithm goes through the input a constant number of times.
This is often the best possible time complexity because it is usually needed
to access each input element at least once before reporting the answer.

O(n logn) This time complexity often means that the algorithm sorts the input
because the time complexity of efficient sorting algorithms is O(n logn).
Another possibility is that the algorithm uses a data structure where the
time complexity of each operation is O(logn).

O(n2) A quadratic algorithm often contains two nested loops. It is possible to
go through all pairs of input elements in O(n2) time.

O(n3) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of input elements in O(n3) time.

O(2n) This time complexity often means that the algorithm iterates through all
subsets of the input elements. For example, the subsets of {1,2,3} are ;, {1},
{2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}.

O(n!) This time complexity often means that the algorithm iterates trough all
permutations of the input elements. For example, the permutations of
{1,2,3} are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

An algorithm is polynomial if its time complexity is at most O(nk) where k is
a constant. All the above time complexities except O(2n) and O(n!) are polynomial.
In practice, the constant k is usually small, and therefore a polynomial time
complexity roughly means that the algorithm is efficient.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems for
which no polynomial algorithm is known.

18



2.3 Estimating efficiency

By calculating the time complexity, it is possible to check before the implementa-
tion that an algorithm is efficient enough for the problem. The starting point for
the estimation is the fact that a modern computer can perform some hundreds of
millions of operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 105. If the time complexity is O(n2), the algorithm will perform
about (105)2 = 1010 operations. This should take some tens of seconds time, so
the algorithm seems to be too slow for solving the problem.

On the other hand, given the input size, we can try to guess the desired time
complexity of the algorithm that solves the problem. The following table contains
some useful estimates assuming that the time limit is one second.

input size (n) desired time complexity
n ≤ 1018 O(1) tai O(logn)
n ≤ 1012 O(

p
n)

n ≤ 106 O(n) tai O(n logn)
n ≤ 5000 O(n2)
n ≤ 500 O(n3)
n ≤ 25 O(2n)
n ≤ 10 O(n!)

For example, if the input size is n = 105, it is probably expected that the time
complexity of the algorithm should be O(n) or O(n logn). This information makes
it easier to design an algorithm because it rules out approaches that would yield
an algorithm with a slower time complexity.

Still, it is important to remember that a time complexity doesn’t tell every-
thing about the efficiency because it hides the constant factors. For example,
an algorithm that runs in O(n) time can perform n/2 or 5n operations. This has
an important effect on the actual running time of the algorithm.

2.4 Maximum subarray sum

There are often several possible algorithms for solving a problem with different
time complexities. This section discusses a classic problem that has a straightfor-
ward O(n3) solution. However, by designing a better algorithm it is possible to
solve the problem in O(n2) time and even in O(n) time.

Given an array of n integers x1, x2, . . . , xn, our task is to find the maximum
subarray sum, i.e., the largest possible sum of numbers in a contiguous region
in the array. The problem is interesting because there may be negative numbers
in the array. For example, in the array

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

19



the following subarray produces the maximum sum 10:

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

Solution 1

A straightforward solution for the problem is to go through all possible ways to
select a subarray, calculate the sum of numbers in each subarray and maintain
the maximum sum. The following code implements this algorithm:

int p = 0;
for (int a = 1; a <= n; a++) {

for (int b = a; b <= n; b++) {
int s = 0;
for (int c = a; c <= b; c++) {

s += x[c];
}
p = max(p,s);

}
}
cout << p << "\n";

The code assumes that the numbers are stored in array x with indices 1 . . .n.
Variables a and b select the first and last number in the subarray, and the sum of
the subarray is calculated to variable s. Variable p contains the maximum sum
found during the search.

The time complexity of the algorithm is O(n3) because it consists of three
nested loops and each loop contains O(n) steps.

Solution 2

It is easy to make the first solution more efficient by removing one loop. This is
possible by calculating the sum at the same time when the right border of the
subarray moves. The result is the following code:

int p = 0;
for (int a = 1; a <= n; a++) {

int s = 0;
for (int b = a; b <= n; b++) {

s += x[b];
p = max(p,s);

}
}
cout << p << "\n";

After this change, the time complexity is O(n2).

20



Solution 3

Surprisingly, it is possible to solve the problem in O(n) time which means that
we can remove one more loop. The idea is to calculate for each array index the
maximum subarray sum that ends to that index. After this, the answer for the
problem is the maximum of those sums.

Condider the subproblem of finding the maximum subarray for a fixed ending
index k. There are two possibilities:

1. The subarray only contains the element at index k.

2. The subarray consists of a subarray that ends to index k−1, followed by
the element at index k.

Our goal is to find a subarray with maximum sum, so in case 2 the subarray
that ends to index k−1 should also have the maximum sum. Thus, we can solve
the problem efficiently when we calculate the maximum subarray sum for each
ending index from left to right.

The following code implements the solution:

int p = 0, s = 0;
for (int k = 1; k <= n; k++) {

s = max(x[k],s+x[k]);
p = max(p,s);

}
cout << p << "\n";

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to access all array elements at least once.

Efficiency comparison

It is interesting to study how efficient the algorithms are in practice. The follow-
ing table shows the running times of the above algorithms for different values of
n in a modern computer.

In each test, the input was generated randomly. The time needed for reading
the input was not measured.

array size n solution 1 solution 2 solution 3
102 0,0 s 0,0 s 0,0 s
103 0,1 s 0,0 s 0,0 s
104 > 10,0 s 0,1 s 0,0 s
105 > 10,0 s 5,3 s 0,0 s
106 > 10,0 s > 10,0 s 0,0 s
107 > 10,0 s > 10,0 s 0,0 s

The comparison shows that all algorithms are efficient when the input size
is small, but larger inputs bring out remarkable differences in running times of

21



the algorithms. The O(n3) time solution 1 becomes slower when n = 103, and the
O(n2) time solution 2 becomes slower when n = 104. Only the O(n) time solution
3 solves even the largest inputs instantly.

22



Chapter 3

Sorting

Sorting is a fundamental algorithm design problem. In addition, many efficient
algorithms use sorting as a subroutine, because it is often easier to process data
if the elements are in a sorted order.

For example, the question ”does the array contain two equal elements?” is
easy to solve using sorting. If the array contains two equal elements, they will
be next to each other after sorting, so it is easy to find them. Also the question
”what is the most frequent element in the array?” can be solved similarly.

There are many algorithms for sorting, that are also good examples of al-
gorithm design techniques. The efficient general sorting algorithms work in
O(n logn) time, and many algorithms that use sorting as a subroutine also have
this time complexity.

3.1 Sorting theory
The basic problem in sorting is as follows:

Given an array that contains n elements, your task is to sort the elements in
increasing order.

For example, the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

will be as follows after sorting:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

O(n2) algorithms

Simple algorithms for sorting an array work in O(n2) time. Such algorithms are
short and usually consist of two nested loops. A famous O(n2) time algorithm

23



for sorting is bubble sort where the elements ”bubble” forward in the array
according to their values.

Bubble sort consists of n−1 rounds. On each round, the algorithm iterates
through the elements in the array. Whenever two successive elements are found
that are not in correct order, the algorithm swaps them. The algorithm can be
implemented as follows for array t[1],t[2], . . . ,t[n]:

for (int i = 1; i <= n-1; i++) {
for (int j = 1; j <= n-i; j++) {

if (t[j] > t[j+1]) swap(t[j],t[j+1]);
}

}

After the first round of the algorithm, the largest element is in the correct
place, after the second round the second largest element is in the correct place,
etc. Thus, after n−1 rounds, all elements will be sorted.

For example, in the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

the first round of bubble sort swaps elements as follows:

1 3 2 8 9 2 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 9 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 9 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 6 9

1 2 3 4 5 6 7 8

Inversions

Bubble sort is an example of a sorting algorithm that always swaps successive
elements in the array. It turns out that the time complexity of this kind of an

24



algorithm is always at least O(n2) because in the worst case, O(n2) swaps are
required for sorting the array.

A useful concept when analyzing sorting algorithms is an inversion. It is a
pair of elements (t[a],t[b]) in the array such that a < b and t[a]> t[b], i.e., they
are in wrong order. For example, in the array

1 2 2 6 3 5 9 8

1 2 3 4 5 6 7 8

the inversions are (6,3), (6,5) and (9,8). The number of inversions indicates how
sorted the array is. An array is completely sorted when there are no inversions.
On the other hand, if the array elements are in reverse order, the number of
inversions is maximum:

1+2+·· ·+ (n−1)= n(n−1)
2

=O(n2)

Swapping successive elements that are in wrong order removes exactly one
inversion from the array. Thus, if a sorting algorithm can only swap successive
elements, each swap removes at most one inversion and the time complexity of
the algorithm is at least O(n2).

O(n logn) algorithms

It is possible to sort an array efficiently in O(n logn) time using an algorithm that
is not limited to swapping successive elements. One such algorithm is mergesort
that sorts an array recursively by dividing it into smaller subarrays.

Mergesort sorts the subarray [a,b] as follows:

1. If a = b, don’t do anything because the subarray is already sorted.

2. Calculate the index of the middle element: k = b(a+b)/2c.
3. Recursively sort the subarray [a,k].

4. Recursively sort the subarray [k+1,b].

5. Merge the sorted subarrays [a,k] and [k+1,b] into a sorted subarray [a,b].

Mergesort is an efficient algorithm because it halves the size of the subarray
at each step. The recursion consists of O(logn) levels, and processing each level
takes O(n) time. Merging the subarrays [a,k] and [k+1,b] is possible in linear
time because they are already sorted.

For example, consider sorting the following array:

1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

The array will be divided into two subarrays as follows:

25



1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

Then, the subarrays will be sorted recursively as follows:

1 2 3 6 2 5 8 9

1 2 3 4 5 6 7 8

Finally, the algorithm merges the sorted subarrays and creates the final
sorted array:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

Sorting lower bound

Is it possible to sort an array faster than in O(n logn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by examining the sort-
ing as a process where each comparison of two elements gives more information
about the contents of the array. The process creates the following tree:

x < y?

x < y? x < y?

x < y? x < y? x < y? x < y?

Here ”x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to order the array, a total of n! ways. For this reason, the
height of the tree must be at least

log2(n!)= log2(1)+ log2(2)+·· ·+ log2(n).

We get an lower bound for this sum by choosing last n/2 elements and changing
the value of each element to log2(n/2). This yields an estimate

log2(n!)≥ (n/2) · log2(n/2),

so the height of the tree and the minimum possible number of steps in an sorting
algorithm in the worst case is at least n logn.

26



Counting sort

The lower bound n logn doesn’t apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is
counting sort that sorts an array in O(n) time assuming that every element in
the array is an integer between 0 . . . c where c is a small constant.

The algorithm creates a bookkeeping array whose indices are elements in the
original array. The algorithm iterates through the original array and calculates
how many times each element appears in the array.

For example, the array

1 3 6 9 9 3 5 9

1 2 3 4 5 6 7 8

produces the following bookkeeping array:

1 0 2 0 1 1 0 0 3

1 2 3 4 5 6 7 8 9

For example, the value of element 3 in the bookkeeping array is 2, because
the element 3 appears two times in the original array (indices 2 and 6).

The construction of the bookkeeping array takes O(n) time. After this, the
sorted array can be created in O(n) time because the amount of each element
can be retrieved from the bookkeeping array. Thus, the total time complexity of
counting sort is O(n).

Counting sort is a very efficient algorithm but it can only be used when the
constant c is so small that the array elements can be used as indices in the
bookkeeping array.

3.2 Sorting in C++
It is almost never a good idea to use an own implementation of a sorting algorithm
in a contest, because there are good implementations available in programming
languages. For example, the C++ standard library contains the function sort
that can be easily used for sorting arrays and other data structures.

There are many benefits in using a library function. First, it saves time
because there is no need to implement the function. In addition, the library
implementation is certainly correct and efficient: it is not probable that a home-
made sorting function would be better.

In this section we will see how to use the C++ sort function. The following
code sorts the numbers in vector t in increasing order:

vector<int> v = {4,2,5,3,5,8,3};
sort(v.begin(),v.end());

After the sorting, the contents of the vector will be [2,3,3,4,5,5,8]. The default
sorting order in increasing, but a reverse order is possible as follows:

27



sort(v.rbegin(),v.rend());

A regular array can be sorted as follows:

int n = 7; // array size
int t[] = {4,2,5,3,5,8,3};
sort(t,t+n);

The following code sorts the string s:

string s = "monkey";
sort(s.begin(), s.end());

Sorting a string means that the characters in the string are sorted. For example,
the string ”monkey” becomes ”ekmnoy”.

Comparison operator

The function sort requires that a comparison operator is defined for the data
type of the elements to be sorted. During the sorting, this operator will be used
whenever it is needed to find out the order of two elements.

Most C++ data types have a built-in comparison operator and elements of
those types can be sorted automatically. For example, numbers are sorted accord-
ing to their values and strings are sorted according to alphabetical order.

Pairs (pair) are sorted primarily by the first element (first). However, if
the first elements of two pairs are equal, they are sorted by the second element
(second):

vector<pair<int,int>> v;
v.push_back({1,5});
v.push_back({2,3});
v.push_back({1,2});
sort(v.begin(), v.end());

After this, the order of the pairs is (1,2), (1,5) and (2,3).
Correspondingly, tuples (tuple) are sorted primarily by the first element,

secondarily by the second element, etc.:

vector<tuple<int,int,int>> v;
v.push_back(make_tuple(2,1,4));
v.push_back(make_tuple(1,5,3));
v.push_back(make_tuple(2,1,3));
sort(v.begin(), v.end());

After this, the order of the tuples is (1,5,3), (2,1,3) and (2,1,4).

28



User-defined structs

User-defined structs do not have a comparison operator automatically. The
operator should be defined inside the struct as a function operator< whose
parameter is another element of the same type. The operator should return true
if the element is smaller than the parameter, and false otherwise.

For example, the following struct P contains the x and y coordinate of a point.
The comparison operator is defined so that the points are sorted primarily by the
x coordinate and secondarily by the y coordinate.

struct P {
int x, y;
bool operator<(const P &p) {

if (x != p.x) return x < p.x;
else return y < p.y;

}
};

Comparison function

It is also possible to give an external comparison function to the sort function
as a callback function. For example, the following comparison function sorts
strings primarily by length and secondarily by alphabetical order:

bool cmp(string a, string b) {
if (a.size() != b.size()) return a.size() < b.size();
return a < b;

}

Now a vector of strings can be sorted as follows:

sort(v.begin(), v.end(), cmp);

3.3 Binary search

A general method for searching for an element in an array is to use a for loop
that iterates through all elements in the array. For example, the following code
searches for an element x in array t:

for (int i = 1; i <= n; i++) {
if (t[i] == x) // x found at index i

}

The time complexity of this approach is O(n) because in the worst case, we
have to check all elements in the array. If the array can contain any elements,

29



this is also the best possible approach because there is no additional information
available where in the array we should search for the element x.

However, if the array is sorted, the situation is different. In this case it is
possible to perform the search much faster, because the order of the elements in
the array guides us. The following binary search algorithm efficiently searches
for an element in a sorted array in O(logn) time.

Method 1

The traditional way to implement binary search resembles looking for a word in
a dictionary. At each step, the search halves the active region in the array, until
the desired element is found, or it turns out that there is no such element.

First, the search checks the middle element in the array. If the middle element
is the desired element, the search terminates. Otherwise, the search recursively
continues to the left half or to the right half of the array, depending on the value
of the middle element.

The above idea can be implemented as follows:

int a = 1, b = n;
while (a <= b) {

int k = (a+b)/2;
if (t[k] == x) // x found at index k
if (t[k] > x) b = k-1;
else a = k+1;

}

The algorithm maintains a range a . . .b that corresponds to the active region
in the array. Initially, the range is 1 . . .n, the whole array. The algorithm halves
the size of the range at each step, so the time complexity is O(logn).

Method 2

An alternative method for implementing binary search is based on a more efficient
way to iterate through the elements in the array. The idea is to make jumps and
slow the speed when we get closer to the desired element.

The search goes through the array from the left to the right, and the initial
jump length is n/2. At each step, the jump length will be halved: first n/4, then
n/8, n/16, etc., until finally the length is 1. After the jumps, either the desired
element has been found or we know that it doesn’t exist in the array.

The following code implements the above idea:

int k = 1;
for (int b = n/2; b >= 1; b /= 2) {

while (k+b <= n && t[k+b] <= x) k += b;
}
if (t[k] == x) // x was found at index k

30



Variable k is the position in the array, and variable b is the jump length. If
the array contains the element x, the index of the element will be in variable k
after the search. The time complexity of the algorithm is O(logn), because the
code in the while loop is performed at most twice for each jump length.

Finding the smallest solution

In practice, it is seldom needed to implement binary search for array search,
because we can use the standard library instead. For example, the C++ functions
lower_bound and upper_bound implement binary search, and the data structure
set maintains a set of elements with O(logn) time operations.

However, an important use for binary search is to find a position where the
value of a function changes. Suppose that we wish to find the smallest value k
that is a valid solution for a problem. We are given a function ok(x) that returns
true if x is a valid solution and false otherwise. In addition, we know that ok(x)
is false when x < k and true when x ≥ k. The situation looks as follows:

x 0 1 · · · k−1 k k+1 · · ·
ok(x) false false · · · false true true · · ·

The value k can be found using binary search:

int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (!ok(x+b)) x += b;
}
int k = x+1;

The search finds the largest value of x for which ok(x) is false. Thus, the
next value k = x+1 is the smallest possible value for which ok(k) is true. The
initial jump length z has to be large enough, for example some value for which
we know beforehand that ok(z) is true.

The algorithm calls the function ok O(log z) times, so the total time complexity
depends on the function ok. For example, if the function works in O(n) time, the
total time complexity becomes O(n log z).

Finding the maximum value

Binary search can also be used for finding the maximum value for a function that
is first increasing and then decreasing. Our task is to find a value k such that

• f (x)< f (x+1) when x < k, and

• f (x)> f (x+1) when x >= k.

The idea is to use binary search for finding the largest value of x for which
f (x)< f (x+1). This implies that k = x+1 because f (x+1)> f (x+2). The following
code implements the search:

31



int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (f(x+b) < f(x+b+1)) x += b;
}
int k = x+1;

Note that unlike in the regular binary search, here it is not allowed that
successive values of the function are equal. In this case it would not be possible
to know how to continue the search.

32



Chapter 4

Data structures

A data structure is a way to store data in the memory of the computer. It is
important to choose a suitable data structure for a problem, because each data
structure has its own advantages and disadvantages. The crucial question is:
which operations are efficient in the chosen data structure?

This chapter introduces the most important data structures in the C++ stan-
dard library. It is a good idea to use the standard library whenever possible,
because it will save a lot of time. Later in the book we will learn more sophisti-
cated data structures that are not available in the standard library.

4.1 Dynamic array

A dynamic array is an array whose size can be changed during the execution
of the code. The most popular dynamic array in C++ is the vector structure
(vector), that can be used almost like a regular array.

The following code creates an empty vector and adds three elements to it:

vector<int> v;
v.push_back(3); // [3]
v.push_back(2); // [3,2]
v.push_back(5); // [3,2,5]

After this, the elements can be accessed like in a regular array:

cout << v[0] << "\n"; // 3
cout << v[1] << "\n"; // 2
cout << v[2] << "\n"; // 5

The function size returns the number of elements in the vector. The following
code iterates through the vector and prints all elements in it:

for (int i = 0; i < v.size(); i++) {
cout << v[i] << "\n";

}

33



A shorter way to iterate trough a vector is as follows:

for (auto x : v) {
cout << x << "\n";

}

The function back returns the last element in the vector, and the function
pop_back removes the last element:

vector<int> v;
v.push_back(5);
v.push_back(2);
cout << v.back() << "\n"; // 2
v.pop_back();
cout << v.back() << "\n"; // 5

The following code creates a vector with five elements:

vector<int> v = {2,4,2,5,1};

Another way to create a vector is to give the number of elements and the
initial value for each element:

// size 10, initial value 0
vector<int> v(10);

// size 10, initial value 5
vector<int> v(10, 5);

The internal implementation of the vector uses a regular array. If the size of
the vector increases and the array becomes too small, a new array is allocated
and all the elements are copied to the new array. However, this doesn’t happen
often and the time complexity of push_back is O(1) on average.

Also the string structure (string) is a dynamic array that can be used almost
like a vector. In addition, there is special syntax for strings that is not available in
other data structures. Strings can be combined using the + symbol. The function
substr(k, x) returns the substring that begins at index k and has length x. The
function find(t) finds the position where a substring t appears in the string.

The following code presents some string operations:

string a = "hatti";
string b = a+a;
cout << b << "\n"; // hattihatti
b[5] = ’v’;
cout << b << "\n"; // hattivatti
string c = b.substr(3,4);
cout << c << "\n"; // tiva

34



4.2 Set structure

A set is a data structure that contains a collection of elements. The basic
operations in a set are element insertion, search and removal.

C++ contains two set implementations: set and unordered_set. The struc-
ture set is based on a balanced binary tree and the time complexity of its
operations is O(logn). The structure unordered_set uses a hash table, and the
time complexity of its operations is O(1) on average.

The choice which set implementation to use is often a matter of taste. The
benefit in the set structure is that it maintains the order of the elements and
provides functions that are not available in unordered_set. On the other hand,
unordered_set is often more efficient.

The following code creates a set that consists of integers, and shows how
to use it. The function insert adds an element to the set, the function count
returns how many times an element appears in the set, and the function erase
removes an element from the set.

set<int> s;
s.insert(3);
s.insert(2);
s.insert(5);
cout << s.count(3) << "\n"; // 1
cout << s.count(4) << "\n"; // 0
s.erase(3);
s.insert(4);
cout << s.count(3) << "\n"; // 0
cout << s.count(4) << "\n"; // 1

A set can be used mostly like a vector, but it is not possible to access the
elements using the [] notation. The following code creates a set, prints the
number of elements in it, and then iterates through all the elements:

set<int> s = {2,5,6,8};
cout << s.size() << "\n"; // 4
for (auto x : s) {

cout << x << "\n";
}

An important property of a set is that all the elements are distinct. Thus, the
function count always returns either 0 (the element is not in the set) or 1 (the
element is in the set), and the function insert never adds an element to the set
if it is already in the set. The following code illustrates this:

set<int> s;
s.insert(5);
s.insert(5);
s.insert(5);
cout << s.count(5) << "\n"; // 1

35



C++ also contains the structures multiset and unordered_multiset that
work otherwise like set and unordered_set but they can contain multiple copies
of an element. For example, in the following code all copies of the number 5 are
added to the set:

multiset<int> s;
s.insert(5);
s.insert(5);
s.insert(5);
cout << s.count(5) << "\n"; // 3

The function erase removes all instances of an element from a multiset:

s.erase(5);
cout << s.count(5) << "\n"; // 0

Often, only one instance should be removed, which can be done as follows:

s.erase(s.find(5));
cout << s.count(5) << "\n"; // 2

4.3 Map structure

A map is a generalized array that consists of key-value-pairs. While the keys in
a regular array are always the successive integers 0,1, . . . ,n−1, where n is the
size of the array, the keys in a map can be of any data type and they don’t have to
be successive values.

C++ contains two map implementations that correspond to the set implemen-
tations: the structure map is based on a balanced binary tree and accessing an
element takes O(logn) time, while the structure unordered_map uses a hash map
and accessing an element takes O(1) time on average.

The following code creates a map where the keys are strings and the values
are integers:

map<string,int> m;
m["monkey"] = 4;
m["banana"] = 3;
m["harpsichord"] = 9;
cout << m["banana"] << "\n"; // 3

If a value of a key is requested but the map doesn’t contain it, the key
is automatically added to the map with a default value. For example, in the
following code, the key ”aybabtu” with value 0 is added to the map.

map<string,int> m;
cout << m["aybabtu"] << "\n"; // 0

36



The function count determines if a key exists in the map:

if (m.count("aybabtu")) {
cout << "key exists in the map";

}

The following code prints all keys and values in the map:

for (auto x : m) {
cout << x.first << " " << x.second << "\n";

}

4.4 Iterators and ranges
Many functions in the C++ standard library are given iterators to data structures,
and iterators often correspond to ranges. An iterator is a variable that points to
an element in a data structure.

Often used iterators are begin and end that define a range that contains all
elements in a data structure. The iterator begin points to the first element in the
data structure, and the iterator end points to the position after the last element.
The situation looks as follows:

{ 3, 4, 6, 8, 12, 13, 14, 17 }
↑ ↑
s.begin() s.end()

Note the asymmetry in the iterators: s.begin() points to an element in the
data structure, while s.end() points outside the data structure. Thus, the range
defined by the iterators is half-open.

Handling ranges

Iterators are used in C++ standard library functions that work with ranges of
data structures. Usually, we want to process all elements in a data structure, so
the iterators begin and end are given for the function.

For example, the following code sorts a vector using the function sort, then
reverses the order of the elements using the function reverse, and finally shuffles
the order of the elements using the function random_shuffle.

sort(v.begin(), v.end());
reverse(v.begin(), v.end());
random_shuffle(v.begin(), v.end());

These functions can also be used with a regular array. In this case, the
functions are given pointers to the array instead of iterators:

37



sort(t, t+n);
reverse(t, t+n);
random_shuffle(t, t+n);

Set iterators

Iterators are often used when accessing elements in a set. The following code
creates an iterator it that points to the first element in the set:

set<int>::iterator it = s.begin();

A shorter way to write the code is as follows:

auto it = s.begin();

The element to which an iterator points can be accessed through the * symbol.
For example, the following code prints the first element in the set:

auto it = s.begin();
cout << *it << "\n";

Iterators can be moved using operators ++ (forward) and –- (backward),
meaning that the iterator moves to the next or previous element in the set.

The following code prints all elements in the set:

for (auto it = s.begin(); it != s.end(); it++) {
cout << *it << "\n";

}

The following code prints the last element in the set:

auto it = s.end();
it--;
cout << *it << "\n";

The function find(x) returns an iterator that points to an element whose
value is x. However, if the set doesn’t contain x, the iterator will be end.

auto it = s.find(x);
if (it == s.end()) cout << "x is missing";

The function lower_bound(x) returns an iterator to the smallest element in
the set whose value is at least x. Correspondingly, the function upper_bound(x)
returns an iterator to the smallest element in the set whose value is larger than
x. If such elements do not exist, the return value of the functions will be end.
These functions are not supported by the unordered_set structure that doesn’t
maintain the order of the elements.

For example, the following code finds the element nearest to x:

38



auto a = s.lower_bound(x);
if (a == s.begin() && a == s.end()) {

cout << "joukko on tyhjä\n";
} else if (a == s.begin()) {

cout << *a << "\n";
} else if (a == s.end()) {

a--;
cout << *a << "\n";

} else {
auto b = a; b--;
if (x-*b < *a-x) cout << *b << "\n";
else cout << *a << "\n";

}

The code goes through all possible cases using the iterator a. First, the iterator
points to the smallest element whose value is at least x. If a is both begin and
end at the same time, the set is empty. If a equals begin, the corresponding
element is nearest to x. If a equals end, the last element in the set is nearest
to x. If none of the previous cases is true, the element nearest to x is either the
element that corresponds to a or the previous element.

4.5 Other structures

Bitset

A bitset (bitset) is an array where each element is either 0 or 1. For example,
the following code creates a bitset that contains 10 elements:

bitset<10> s;
s[2] = 1;
s[5] = 1;
s[6] = 1;
s[8] = 1;
cout << s[4] << "\n"; // 0
cout << s[5] << "\n"; // 1

The benefit in using a bitset is that it requires less memory than a regular
array, because each element in the bitset only uses one bit of memory. For
example, if n bits are stored as an int array, 32n bits of memory will be used,
but a corresponding bitset only requires n bits of memory. In addition, the values
in a bitset can be efficiently manipulated using bit operators, which makes it
possible to optimize algorithms.

The following code shows another way to create a bitset:

bitset<10> s(string("0010011010"));
cout << s[4] << "\n"; // 0
cout << s[5] << "\n"; // 1

39



The function count returns the number of ones in the bitset:

bitset<10> s(string("0010011010"));
cout << s.count() << "\n"; // 4

The following code shows examples of using bit operations:

bitset<10> a(string("0010110110"));
bitset<10> b(string("1011011000"));
cout << (a&b) << "\n"; // 0010010000
cout << (a|b) << "\n"; // 1011111110
cout << (a^b) << "\n"; // 1001101110

Pakka

A deque (deque) is a dynamic array whose size can be changed at both ends of
the array. Like a vector, a deque contains functions push_back and pop_back,
but it also contains additional functions push_front and pop_front that are not
available in a vector.

A deque can be used as follows:

deque<int> d;
d.push_back(5); // [5]
d.push_back(2); // [5,2]
d.push_front(3); // [3,5,2]
d.pop_back(); // [3,5]
d.pop_front(); // [5]

The internal implementation of a deque is more complex than the implemen-
tation of a vector. For this reason, a deque is slower than a vector. Still, the time
complexity of adding and removing elements is O(1) on average at both ends.

Pino

A stack (stack) is a data structure that provides two O(1) time operations:
adding an element to the top, and removing an element from the top. It is only
possible to access the top element of a stack.

The following code shows how a stack can be used:

stack<int> s;
s.push(3);
s.push(2);
s.push(5);
cout << s.top(); // 5
s.pop();
cout << s.top(); // 2

40



Queue

A queue (queue) also provides two O(1) time operations: adding a new element
to the end, and removing the first element. It is only possible to access the first
and the last element of a queue.

The following code shows how a queue can be used:

queue<int> s;
s.push(3);
s.push(2);
s.push(5);
cout << s.front(); // 3
s.pop();
cout << s.front(); // 2

Priority queue

A priority queue (priority_queue) maintains a set of elements. The supported
operations are insertion and, depending on the type of the queue, retrieval and
removal of either the minimum element or the maximum element. The time
complexity is O(logn) for insertion and removal and O(1) for retrieval.

While a set structure efficiently supports all the operations of a priority queue,
the benefit in using a priority queue is that it has smaller constant factors.
A priority queue is usually implemented using a heap structure that is much
simpler than a balanced binary tree needed for an ordered set.

As default, the elements in the C++ priority queue are sorted in decreasing
order, and it is possible to find and remove the largest element in the queue. The
following code shows an example:

priority_queue<int> q;
q.push(3);
q.push(5);
q.push(7);
q.push(2);
cout << q.top() << "\n"; // 7
q.pop();
cout << q.top() << "\n"; // 5
q.pop();
q.push(6);
cout << q.top() << "\n"; // 6
q.pop();

The following definition creates a priority queue that supports finding and
removing the minimum element:

priority_queue<int,vector<int>,greater<int>> q;

41



4.6 Comparison to sorting

Often it’s possible to solve a problem using either data structures or sorting.
Sometimes there are remarkable differences in the actual efficiency of these
approaches, which may be hidden in their time complexities.

Let us consider a problem where we are given two lists A and B that both
contain n integers. Our task is to calculate the number of integers that belong to
both of the lists. For example, for the lists

A = [5,2,8,9,4] and B = [3,2,9,5],

the answer is 3 because the numbers 2, 5 and 9 belong to both of the lists.
A straightforward solution for the problem is to go through all pairs of num-

bers in O(n2) time, but next we will concentrate on more efficient solutions.

Solution 1

We construct a set of the numbers in A, and after this, iterate through the
numbers in B and check for each number if it also belongs to A. This is efficient
because the numbers in A are in a set. Using the set structure, the time
complexity of the algorithm is O(n logn).

Solution 2

It is not needed to maintain an ordered set, so instead of the set structure we
can also use the unordered_set structure. This is an easy way to make the
algorithm more efficient because we only have to change the data structure that
the algorithm uses. The time complexity of the new algorithm is O(n).

Solution 3

Instead of data structures, we can use sorting. First, we sort both lists A and
B. After this, we iterate through both the lists at the same time and find the
common elements. The time complexity of sorting is O(n logn), and the rest of
the algorithm works in O(n) time, so the total time complexity is O(n logn).

Efficiency comparison

The following table shows how efficient the above algorithms are when n varies
and the elements in the lists are random integers between 1 . . .109:

n solution 1 solution 2 solution 3
106 1,5 s 0,3 s 0,2 s

2 ·106 3,7 s 0,8 s 0,3 s
3 ·106 5,7 s 1,3 s 0,5 s
4 ·106 7,7 s 1,7 s 0,7 s
5 ·106 10,0 s 2,3 s 0,9 s

42



Solutions 1 and 2 are equal except that solution 1 uses the set structure and
solution 2 uses the unordered_set structure. In this case, this choice has a big
effect on the running time becase solution 2 is 4–5 times faster than solution 1.

However, the most efficient solution is solution 3 that uses sorting. It only
uses half of the time compared to solution 2. Interestingly, the time complexity
of both solution 1 and solution 3 is O(n logn), but despite this, solution 3 is ten
times faster. The explanation for this is that sorting is a simple procedure and
it is done only once at the beginning of solution 3, and the rest of the algorithm
works in linear time. On the other hand, solution 3 maintains a complex balanced
binary tree during the whole algorithm.

43



44



Chapter 5

Complete search

Compelete search is a general method that can be used for solving almost any
algorithm problem. The idea is to generate all possible solutions for the problem
using brute force, and select the best solution or count the number of solutions,
depending on the problem.

Complete search is a good technique if it is feasible to go through all the
solutions, because the search is usually easy to implement and it always gives
the correct answer. If complete search is too slow, greedy algorithms or dynamic
programming, presented in the next chapters, may be used.

5.1 Generating subsets

We first consider the case where the possible solutions for the problem are the
subsets of a set of n elements. In this case, a complete search algorithm has to
generate all 2n subsets of the set.

Method 1

An elegant way to go through all subsets of a set is to use recursion. The following
function gen generates the subsets of the set {1,2, . . . ,n}. The function maintains
a vector v that will contain the elements in the subset. The generation of the
subsets begins when the function is called with parameter 1.

void gen(int k) {
if (k == n+1) {

// process subset v
} else {

gen(k+1);
v.push_back(k);
gen(k+1);
v.pop_back();

}
}

45



The parameter k is the number that is the next candidate to be included in
the subset. The function branches to two cases: either k is included or it is not
included in the subset. Finally, when k = n+1, a decision has been made for all
the numbers and one subset has been generated.

For example, when n = 3, the function calls create a tree illustrated below.
At each call, the left branch doesn’t include the number and the right branch
includes the number in the subset.

gen(1)

gen(2) gen(2)

gen(3) gen(3) gen(3) gen(3)

gen(4) gen(4) gen(4) gen(4) gen(4) gen(4) gen(4) gen(4)

; {3} {2} {2,3} {1} {1,3} {1,2} {1,2,3}

Method 2

Another way to generate the subsets is to exploit the bit representation of in-
tegers. Each subset of a set of n elements can be represented as a sequence of
n bits, which corresponds to an integer between 0 . . .2n −1. The ones in the bit
representation indicate which elements of the set are included in the subset.

The usual interpretation is that element k is included in the subset if kth bit
from the end of the bit sequence is one. For example, the bit representation of 25
is 11001 that corresponds to the subset {1,4,5}.

The following iterates through all subsets of a set of n elements

for (int b = 0; b < (1<<n); b++) {
// process subset b

}

The following code converts each bit representation to a vector v that contains
the elements in the subset. This can be done by checking which bits are one in
the bit representation.

for (int b = 0; b < (1<<n); b++) {
vector<int> v;
for (int i = 0; i < n; i++) {

if (b&(1<<i)) v.push_back(i+1);
}

}

46



5.2 Generating permutations

Another common situation is that the solutions for the problem are permutations
of a set of n elements. In this case, a complete search algorithm has to generate
n! possible permutations.

Method 1

Like subsets, permutations can be generated using recursion. The following
function gen iterates through the permutations of the set {1,2, . . . ,n}. The function
uses the vector v for storing the permutations, and the generation begins by
calling the function without parameters.

void haku() {
if (v.size() == n) {

// process permutation v
} else {

for (int i = 1; i <= n; i++) {
if (p[i]) continue;
p[i] = 1;
v.push_back(i);
haku();
p[i] = 0;
v.pop_back();

}
}

}

Each function call adds a new element to the permutation in the vector v.
The array p indicates which elements are already included in the permutation. If
p[k]= 0, element k is not included, and if p[k]= 1, element k is included. If the
size of the vector equals the size of the set, a permutation has been generated.

Method 2

Another method is to begin from permutation {1,2, . . . ,n} and at each step gener-
ate the next permutation in increasing order. The C++ standard library contains
the function next_permutation that can be used for this. The following code
generates the permutations of the set {1,2, . . . ,n} using the function:

vector<int> v;
for (int i = 1; i <= n; i++) {

v.push_back(i);
}
do {

// process permutation v
} while (next_permutation(v.begin(),v.end()));

47



5.3 Backtracking
A backtracking algorithm begins from an empty solution and extends the
solution step by step. At each step, the search branches to all possible directions
how the solution can be extended. After processing one branch, the search
continues to other possible directions.

As an example, consider the queen problem where our task is to calculate
the number of ways we can place n queens to an n× n chessboard so that no
two queens attack each other. For example, when n = 4, there are two possible
solutions for the problem:

K

K

K

K

K

K

K

K

The problem can be solved using backtracking by placing queens to the board
row by row. More precisely, we should place exactly one queen to each row so that
no queen attacks any of the queens placed before. A solution is ready when we
have placed all n queens to the board.

For example, when n = 4, the tree produced by the backtracking algorithm
begins like this:

K K K K

K K K K
K K K K

7 7 7 3

At the bottom level, the three first subsolutions are not valid because the
queens attack each other. However, the fourth subsolution is valid and it can be
extended to a full solution by placing two more queens to the board.

The following code implements the search:

48



void search(int y) {
if (y == n) {

c++;
return;

}
for (int x = 0; x < n; x++) {

if (r1[x] || r2[x+y] || r3[x-y+n-1]) continue;
r1[x] = r2[x+y] = r3[x-y+n-1] = 1;
search(y+1);
r1[x] = r2[x+y] = r3[x-y+n-1] = 0;

}
}

The search begins by calling search(0). The size of the board is in the variable
n, and the code calculates the number of solutions to the variable c.

The code assumes that the rows and columns of the board are numbered from
0. The function places a queen to row y when 0 ≤ y < n. Finally, if y = n, one
solution has been found and the variable c is increased by one.

The array r1 keeps track of the columns that already contain a queen. Sim-
ilarly, the arrays r2 and r3 keep track of the diagonals. It is not allowed to
add another queen to a column or to a diagonal. For example, the rows and the
diagonals of the 4×4 board are numbered as follows:

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

2 3 4 5

1 2 3 4

0 1 2 3

r1 r2 r3

Using the presented backtracking algorithm, we can calculate that, for exam-
ple, there are 92 ways to place 8 queens to an 8×8 chessboard. When n increases,
the search quickly becomes slow because the number of the solutions increases
exponentially. For example, calculating the ways to place 16 queens to the 16×16
chessboard already takes about a minute (there are 14772512 solutions).

5.4 Pruning the search

A backtracking algorithm can often be optimized by pruning the search tree. The
idea is to add ”intelligence” to the algorithm so that it will notice as soon as
possible if is not possible to extend a subsolution into a full solution. This kind of
optimization can have a tremendous effect on the efficiency of the search.

Let us consider a problem where our task is to calculate the number of paths
in an n×n grid from the upper-left corner to the lower-right corner so that each
square will be visited exactly once. For example, in the 7×7 grid, there are

49



111712 possible paths from the lower-right corner to the upper-right corner. One
of the paths is as follows:

We will concentrate on the 7×7 case because it is computationally suitable
difficult. We begin with a straightforward backtracking algorithm, and then
optimize it step by step using observations how the search tree can be pruned.
After each optimization, we measure the running time of the algorithm and the
number of recursive calls, so that we will clearly see the effect of each optimization
on the efficiency of the search.

Basic algorithm

The first version of the algorithm doesn’t contain any optimizations. We simply
use backtracking to generate all possible paths from the upper-left corner to the
lower-right corner.

• running time: 483 seconds

• recursive calls: 76 billions

Optimization 1

The first step in a solution is either downward or to the right. There are always
two paths that are symmetric about the diagonal of the grid after the first step.
For example, the following paths are symmetric:

Thus, we can decide that the first step in the solution is always downward,
and finally multiply the number of the solutions by two.

• running time: 244 seconds

• recursive calls: 38 billions

50



Optimization 2

If the path reaches the lower-right square before it has visited all other squares
of the grid, it is clear that it will not be possible to complete the solution. An
example of this is the following case:

Using this observation, we can terminate the search branch immediately if we
reach the lower-right square too early.

• running time: 119 seconds

• recursive calls: 20 billions

Optimization 3

If the path touches the wall so that there is an unvisited square at both sides,
the grid splits into two parts. For example, in the following case both the left and
the right squares are unvisited:

Now it will not be possible to visit every square, so we can terminate the search
branch. This optimization is very useful:

• running time: 1.8 seconds

• recursive calls: 221 millions

Optimization 4

The idea of the previous optimization can be generalized: the grid splits into two
parts if the top and bottom neighbors of the current square are unvisited and the
left and right neighbors are wall or visited (or vice versa).

For example, in the following case the top and bottom neighbors are unvisited,
so the path cannot visit all squares in the grid anymore:

51



The search becomes even faster when we terminate the search branch in all such
cases:

• running time: 0.6 seconds

• recursive calls: 69 millions

Now it’s a good moment to stop optimization and remember our starting point.
The running time of the original algorithm was 483 seconds, and now after the
optimizations, the running time is only 0.6 seconds. Thus, the algorithm became
nearly 1000 times faster after the optimizations.

This is a usual phenomenon in backtracking because the search tree is usually
large and even simple optimizations can prune a lot of branches in the tree.
Especially useful are optimizations that occur at the top of the search tree
because they can prune the search very efficiently.

5.5 Meet in the middle

Meet in the middle is a technique where the search space is divided into two
equally large parts. A separate search is performed for each of the parts, and
finally the results of the searches are combined.

The meet in the middle technique can be used if there is an efficient way to
combine the results of the searches. In this case, the two searches may require
less time than one large search. Typically, we can turn a factor of 2n into a factor
of 2n/2 using the meet in the middle technique.

As an example, consider a problem where we are given a list of n numbers and
an integer x. Our task is to find out if it is possible to choose some numbers from
the list so that the sum of the numbers is x. For example, given the list [2,4,5,9]
and x = 15, we can choose the numbers [2,4,9] to get 2+4+9= 15. However, if
the list remains the same but x = 10, it is not possible to form the sum.

A standard solution for the problem is to go through all subsets of the elements
and check if the sum of any of the subsets is x. The time complexity of this solution
is O(2n) because there are 2n possible subsets. However, using the meet in the
middle technique, we can create a more efficient O(2n/2) time solution. Note that
O(2n) and O(2n/2) are different complexities because 2n/2 equals

p
2n.

The idea is to divide the list given as input to two lists A and B that each
contain about half of the numbers. The first search generates all subsets of the

52



numbers in the list A and stores their sums to list SA. Correspondingly, the
second search creates the list SB from the list B. After this, it suffices to check if
it is possible to choose one number from SA and another number from SB so that
their sum is x. This is possible exactly when there is a way to form the sum x
using the numbers in the original list.

For example, assume that the list is [2,4,5,9] and x = 15. First, we divide the
list into A = [2,4] and B = [5,9]. After this, we create the lists SA = [0,2,4,6] and
SB = [0,5,9,14]. The sum x = 15 is possible to form because we can choose the
number 6 from SA and the number 9 from SB. This choice corresponds to the
solution [2,4,9].

The time complexity of the algorithm is O(2n/2) because both lists A and B
contain n/2 numbers and it takes O(2n/2) time to calculate the sums of their
subsets to lists SA and SB. After this, it is possible to check in O(2n/2) time if the
sum x can be created using the numbers in SA and SB.

53



54



Chapter 6

Greedy algorithms

A greedy algorithm constructs a solution for a problem by always making a
choice that looks the best at the moment. A greedy algorithm never takes back
its choices, but directly constructs the final solution. For this reason, greedy
algorithms are usually very efficient.

The difficulty in designing a greedy algorithm is to invent a greedy strategy
that always produces an optimal solution for the problem. The locally optimal
choices in a greedy algorithm should also be globally optimal. It’s often difficult
to argue why a greedy algorithm works.

6.1 Coin problem

As the first example, we consider a problem where we are given a set of coin
values and our task is to form a sum of money using the coins. The values of the
coins are {c1, c2, . . . , ck}, and each coin can be used as many times we want. What
is the minimum number of coins needed?

For example, if the coins are euro coins (in cents)

{1,2,5,10,20,50,100,200}

and the sum of money is 520, we need at least four coins. The optimal solution is
to select coins 200+200+100+20 whose sum is 520.

Greedy algorithm

A natural greedy algorithm for the problem is to always select the largest possible
coin, until we have constructed the required sum of money. This algorithm works
in the example case, because we first select two 200 cent coins, then one 100 cent
coin and finally one 20 cent coin. But does this algorithm always work?

It turns out that, for the set of euro coins, the greedy algorithm always works,
i.e., it always produces a solution with the fewest possible number of coins. The
correctness of the algorithm can be argued as follows:

Each coin 1, 5, 10, 50 and 100 appears at most once in the optimal solution.
The reason for this is that if the solution would contain two such coins, we could

55



replace them by one coin and obtain a better solution. For example, if the solution
would contain coins 5+5, we could replace them by coin 10.

In the same way, both coins 2 and 20 can appear at most twice in the optimal
solution because, we could replace coins 2+2+2 by coins 5+1 and coins 20+20+20
by coins 50+10. Moreover, the optimal solution can’t contain coins 2+2+1 or
20+20+10 because we would replace them by coins 5 and 50.

Using these observations, we can show for each coin x that it is not possible to
optimally construct sum x or any larger sum by only using coins that are smaller
than x. For example, if x = 100, the largest optimal sum using the smaller coins
is 5+20+20+5+2+2= 99. Thus, the greedy algorithm that always selects the
largest coin produces the optimal solution.

This example shows that it can be difficult to argue why a greedy algorithm
works, even if the algorithm itself is simple.

General case

In the general case, the coin set can contain any coins and the greedy algorithm
not necessarily produces an optimal solution.

We can prove that a greedy algorithm doesn’t work by showing a counterex-
ample where the algorithm gives a wrong answer. In this problem it’s easy to find
a counterexample: if the coins are {1,3,4} and the sum of money is 6, the greedy
algorithm produces the solution 4+1+1, while the optimal solution is 3+3.

We don’t know if the general coin problem can be solved using any greedy
algorithm. However, we will revisit the problem in the next chapter because the
general problem can be solved using a dynamic programming algorithm that
always gives the correct answer.

6.2 Scheduling
Many scheduling problems can be solved using a greedy strategy. A classic
problem is as follows: Given n events with their starting and ending times, our
task is to plan a schedule so that we can join as many events as possible. It’s not
possible to join an event partially. For example, consider the following events:

event starting time ending time
A 1 3
B 2 5
C 3 9
D 6 8

In this case the maximum number of events is two. For example, we can join
events B and D as follows:

A
B

C
D

56



It is possible to invent several greedy algorithms for the problem, but which
of them works in every case?

Algorithm 1

The first idea is to select as short events as possible. In the example case this
algorithm selects the following events:

A
B

C
D

However, choosing short events is not always a correct strategy but the
algorithm fails, for example, in the following case:

If we select the short event, we can only select one event. However, it would be
possible to select both the long events.

Algorithm 2

Another idea is to always select the next possible event that begins as early as
possible. This algorithm selects the following events:

A
B

C
D

However, we can find a counterexample for this algorithm, too. For example,
in the following case, the algorithm selects only one event:

If we select the first event, it is not possible to select any other events. However,
it would be possible to join the other two events.

57



Algorithm 3

The third idea is to always select the next possible event that ends as early as
possible. This algorithm selects the following events:

A
B

C
D

It turns out that this algorithm always produces an optimal solution. The
algorithm works because regarding the final solution, it is optimal to select an
event that ends as soon as possible. Then it is optimal to select the next event
using the same strategy, etc.

One way to justify the choice is to think what happens if we first select some
event that ends later than the event that ends as soon as possible. This can never
be a better choice because after an event that ends later, we will have at most
an equal number of possibilities to select for the next events, compared to the
strategy that we select the event that ends as soon as possible.

6.3 Tasks and deadlines
We are given n tasks with duration and deadline. Our task is to choose an order
to perform the tasks. For each task, we get d− x points where d is the deadline
of the task and x is the moment when we finished the task. What is the largest
possible total score we can obtain?

For example, if the tasks are

task duration deadline
A 4 2
B 3 5
C 2 7
D 4 5

then the optimal solution is to perform the tasks as follows:

C B A D

0 5 10

In this solution, C yields 5 points, B yields 0 points, A yields −7 points and D
yields −8 points, so the total score is −10.

Surprisingly, the optimal solution for the problem doesn’t depend on the
dedalines at all, but a correct greedy strategy is to simply perform the tasks
sorted by their durations in increasing order. The reason for this is that if we
ever perform two successive tasks such that the first task takes longer than the
second task, we can obtain a better solution if we swap the tasks. For example, if
the successive tasks are

58



X Y

a b

and a > b, the swapped order of the tasks

Y X

b a

gives b points less to X and a points more to Y , so the total score increases by
a−b > 0. In an optimal solution, for each two successive tasks, it must hold that
the shorter task comes before the longer task. Thus, the tasks must be performed
sorted by their durations.

6.4 Minimizing sums
We will next consider a problem where we are given n numbers a1,a2, . . . ,an and
our task is to find a value x such that the sum

|a1 − x|c +|a2 − x|c +·· ·+ |an − x|c

becomes as small as possible. We will focus on the cases c = 1 and c = 2.

Case c = 1

In this case, we should minimize the sum

|a1 − x|+ |a2 − x|+ · · ·+ |an − x|.

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 2
which produces the sum

|1−2|+ |2−2|+ |9−2|+ |2−2|+ |6−2| = 12.

In the general case, the best choice for x is the median of the numbers, i.e., the
middle number after sorting. For example, the list [1,2,9,2,6] becomes [1,2,2,6,9]
after sorting, so the median is 2.

The median is the optimal choice, because if x is smaller than the median, the
sum becomes smaller by increasing x, and if x is larger then the median, the sum
becomes smaller by decreasing x Thus, we should move x as near the median as
possible, so the optimal solution that x is the median. If n is even and there are
two medians, both medians and all values between them are optimal solutions.

Case c = 2

In this case, we should minimize the sum

(a1 − x)2 + (a2 − x)2 +·· ·+ (an − x)2.

59



For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 4
which produces the sum

(1−4)2 + (2−4)2 + (9−4)2 + (2−4)2 + (6−4)2 = 46.

In the general case, the best choice for x is the average of the numbers. In the
example the average is (1+2+9+2+6)/5 = 4. This result can be derived by
presenting the sum as follows:

nx2 −2x(a1 +a2 +·· ·+an)+ (a2
1 +a2

2 +·· ·+a2
n).

The last part doesn’t depend on x, so we can ignore it. The remaining parts form a
function nx2−2xs where s = a1+a2+·· ·+an. This is a parabola opening upwards
with roots x = 0 and x = 2s/n, and the minimum value is the average of the roots
x = s/n, i.e., the average of the numbers a1,a2, . . . ,an.

6.5 Data compression

We are given a string, and our task is to compress it so that it requires less
space. We will do this using a binary code that determines for each character
a codeword that consists of bits. After this, we can compress the string by
replacing each character by the corresponding codeword. For example, the
following binary code determines codewords for characters A–D:

character codeword
A 00
B 01
C 10
D 11

This is a constant-length code which means that the length of each codeword is
the same. For example, the compressed form of the string AABACDACA is

000001001011001000,

so 18 bits are needed. However, we can compress the string better by using a
variable-length code where codewords may have different lengths. Then we
can give short codewords for characters that appear often, and long codewords
for characters that appear rarely. It turns out that the optimal code for the
aforementioned string is as follows:

character codeword
A 0
B 110
C 10
D 111

60



The optimal code produces a compressed string that is as short as possible. In
this case, the compressed form using the optimal code is

001100101110100,

so only 15 bits are needed. Thus, thanks to a better code it was possible to save 3
bits in the compressed string.

Note that it is required that no codeword is a prefix of another codeword. For
example, it is not allowed that a code would contain both codewords 10 and 1011.
The reason for this is that we also want to be able to generate the original string
from the compressed string. If a codeword could be a prefix of another codeword,
this would not always be possible. For example, the following code is not valid:

merkki koodisana
A 10
B 11
C 1011
D 111

Using this code, it would not be possible to know if the compressed string 1011
means the string AB or the string C.

Huffman coding

Huffman coding is a greedy algorithm that constructs an optimal code for
compressing a string. The algorithm builds a binary tree based on the frequencies
of the characters in the string, and a codeword for each characters can be read
by following a path from the root to the corresponding node. A move to the left
correspons to bit 0, and a move to the right corresponds to bit 1.

Initially, each character of the string is represented by a node whose weight
is the number of times the character appears in the string. Then at each step two
nodes with minimum weights are selected and they are combined by creating
a new node whose weight is the sum of the weights of the original nodes. The
process continues until all nodes have been combined and the code is ready.

Next we will see how Huffman coding creates the optimal code for the string
AABACDACA. Initially, there are four nodes that correspond to the characters in
the string:

5 1 2 1

A B C D

The node that represents character A has weight 5 because character A appears 5
times in the string. The other weights have been calculated in the same way.

The first step is to combine the nodes that correspond to characters B and D,
both with weight 1. The result is:

61



5 2 1 1

2

A C B D

0 1

After this, the nodes with weight 2 are combined:

5

2

1 1

2

4

A

C

B D

0 1

0 1

Finally, the two remaining nodes are combined:

5

2

1 1

2

4

9

A

C

B D

0 1

0 1

0 1

Now all nodes are in the tree, so the code is ready. The following codewords
can be read from the tree:

character codeword
A 0
B 110
C 10
D 111

62



Chapter 7

Dynamic programming

Dynamic programming is a technique that combines the correctness of com-
plete search and the efficiency of greedy algorithms. Dynamic programming can
be used if the problem can be divided into subproblems that can be calculated
independently.

There are two uses for dynamic programming:

• Findind an optimal solution: We want to find a solution that is as large
as possible or as small as possible.

• Couting the number of solutions: We want to calculate the total number
of possible solutions.

We will first see how dynamic programming can be used for finding an optimal
solution, and then we will use the same idea for counting the solutions.

Understanding dynamic programming is a milestone in every competitive
programmer’s career. While the basic idea of the technique is simple, the chal-
lenge is how to apply it for different problems. This chapter introduces a set of
classic problems that are a good starting point.

7.1 Coin problem
We first consider a problem that we have already seen: Given a set of coin values
{c1, c2, . . . , ck} and a sum of money x, our task is to form the sum x using as few
coins as possible.

In Chapter 6.1, we solved the problem using a greedy algorithm that always
selects the largest possible coin for the sum. The greedy algorithm works, for
example, when the coins are the euro coins, but in the general case the greedy
algorithm doesn’t necessarily produce an optimal solution.

Now it’s time to solve the problem efficiently using dynamic programming, so
that the algorithms works for any coin set. The dynamic programming algorithm
is based on a recursive function that goes through all possibilities how to select
the coins, like a brute force algorithm. However, the dynamic programming
algorithm is efficient because it uses memoization to calculate the answer for
each subproblem only once.

63



Recursive formulation

The idea in dynamic programming is to formulate the problem recursively so that
the answer for the problem can be calculated from the answers for the smaller
subproblems. In this case, a natural problem is as follows: what is the smallest
number of coins required for constructing sum x?

Let f (x) be a function that gives the answer for the problem, i.e., f (x) is the
smallest number of coins required for constructing sum x. The values of the
function depend on the values of the coins. For example, if the values are {1,3,4},
the first values of the function are as follows:

f (0) = 0
f (1) = 1
f (2) = 2
f (3) = 1
f (4) = 1
f (5) = 2
f (6) = 2
f (7) = 2
f (8) = 2
f (9) = 3
f (10) = 3

First, f (0) = 0 because no coins are needed for sum 0. Moreover, f (3) = 1
because the sum 3 can be formed using coin 3, and f (5) = 2 because the sum 5
can be formed using coins 1 and 4.

The essential property in the function is that the value f (x) can be calculated
recursively from the smaller values of the function. For example, if the coin set is
{1,3,4}, there are three ways to select the first coin in a solution: we can choose
coin 1, 3 or 4. If coin 1 is chosen, the remaining task is to form the sum x−1.
Similarly, if coin 3 or 4 is chosen, we should form the sum x−3 or x−4.

Thus, the recursive formula is

f (x)=min( f (x−1), f (x−3), f (x−4))+1

where the function min returns the smallest of its parameters. In the general
case, for the coin set {c1, c2, . . . , ck}, the recursive formula is

f (x)=min( f (x− c1), f (x− c2), . . . , f (x− ck))+1.

The base case for the function is

f (0)= 0,

because no coins are needed for constructing the sum 0. In addition, it’s a good
idea to define

f (x)=∞, jos x < 0.

This means that an infinite number of coins is needed to create a negative sum
of money. This prevents the situation that the recursive function would form a
solution where the initial sum of money is negative.

64



Now it’s possible to implement the function in C++ directly using the recursive
definition:

int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
int u = 1e9;
for (int i = 1; i <= k; i++) {

u = min(u, f(x-c[i])+1);
}
return u;

}

The code assumes that the available coins are c[1],c[2], . . . ,c[k], and the value
109 means infinity. This function works but it is not efficient yet because it goes
through a large number of ways to construct the sum. However, the function
becomes efficient by using memoization.

Memoization

Dynamic programming allows to calculate the value of a recursive function
efficiently using memoization. This means that an auxiliary array is used for
storing the values of the function for different parameters. For each parameter,
the value of the function is calculated only once, and after this, it can be directly
retrieved from the array.

In this problem, we can use the array

int d[N];

where d[x] will contain the value f (x). The constant N should be chosen so
that there is space for all needed values of the function.

After this, the function can be efficiently implemented as follows:

int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
if (d[x]) return d[x];
int u = 1e9;
for (int i = 1; i <= k; i++) {

u = min(u, f(x-c[i])+1);
}
d[x] = u;
return d[x];

}

The function handles the base cases x = 0 and x < 0 as previously. Then the
function checks if f (x) has already been calculated and stored to d[x]. If f (x) can
be found in the array, the function directly returns it. Otherwise the function
calculates the value recursively and stores it to d[x].

65



Using memoization the function works efficiently because it is needed to
recursively calculate the answer for each x only once. After a value f (x) has been
stored to the array, it can be directly retrieved whenever the function will be
called again with parameter x.

The time complexity of the resulting algorithm is O(xk) when the sum is x
and the number of coins is k. In practice, the algorithm is usable if x is so small
that it is possible to allocate an array for all possible function parameters.

Note that the array can also be constructed using a loop that calculates all
the values instead of a recursive function:

d[0] = 0;
for (int i = 1; i <= x; i++) {

int u = 1e9;
for (int j = 1; j <= k; j++) {

if (i-c[j] < 0) continue;
u = min(u, d[i-c[j]]+1);

}
d[i] = u;

}

This implementation is shorter and somewhat more efficient than recursion,
and experienced competitive programmers often implement dynamic program-
ming solutions using loops. Still, the underlying idea is the same as in the
recursive function.

Constructing the solution

Sometimes it is not enough to find out the value of the optimal solution, but we
should also give an example how such a solution can be constructed. In this
problem, this means that the algorithm should show how to select the coins that
produce the sum x using as few coins as possible.

We can construct the solution by adding another array to the code. The array
indicates for each sum of money the first coin that should be chosen in an optimal
solution. In the following code, the array e is used for this:

d[0] = 0;
for (int i = 1; i <= x; i++) {

d[i] = 1e9;
for (int j = 1; j <= k; j++) {

if (i-c[j] < 0) continue;
int u = d[i-c[j]]+1;
if (u < d[i]) {

d[i] = u;
e[i] = c[j];

}
}

}

66



After this, we can print the coins needed for the sum x as follows:

while (x > 0) {
cout << e[x] << "\n";
x -= e[x];

}

Counting the number of solutions

Let us now consider a variation of the problem that it’s like the original problem
but we should count the total number of solutions instead of finding the optimal
solution. For example, if the coins are {1,3,4} and the required sum is 5, there
are a total of 6 solutions:

• 1+1+1+1+1

• 1+1+3

• 1+3+1

• 3+1+1

• 1+4

• 4+1

The number of the solutions can be calculated using the same idea as finding
the optimal solution. The difference is that when finding the optimal solution, we
maximize or minimize something in the recursion, but now we will sum together
all possible alternatives to construct a solution.

In this case, we can define a function f (x) that returns the number of ways
to construct the sum x using the coins. For example, f (5)= 6 when the coins are
{1,3,4}. The function f (x) can be recursively calculated using the formula

f (x)= f (x− c1)+ f (x− c2)+·· ·+ f (x− ck)

because to form the sum x we should first choose some coin ci and after this form
the sum x− ci. The base cases are f (0) = 1 because there is exactly one way to
form the sum 0 using an empty set of coins, and f (x)= 0, when x < 0, because it’s
not possible to form a negative sum of money.

In the above example the function becomes

f (x)= f (x−1)+ f (x−3)+ f (x−4)

and the first values of the function are:

f (0) = 1
f (1) = 1
f (2) = 1
f (3) = 2
f (4) = 4
f (5) = 6
f (6) = 9
f (7) = 15
f (8) = 25
f (9) = 40

67



The following code calculates the value f (x) using dynamic programming by
filling the array d for parameters 0 . . . x:

d[0] = 1;
for (int i = 1; i <= x; i++) {

for (int j = 1; j <= k; j++) {
if (i-c[j] < 0) continue;
d[i] += d[i-c[j]];

}
}

Often the number of the solutions is so large that it is not required to calculate
the exact number but it is enough to give the answer modulo m where, for exam-
ple, m = 109 +7. This can be done by changing the code so that all calculations
will be done in modulo m. In this case, it is enough to add the line

d[i] %= m;

after the line

d[i] += d[i-c[j]];

Now we have covered all basic techniques related to dynamic programming.
Since dynamic programming can be used in many different situations, we will
now go through a set of problems that show further examples how dynamic
programming can be used.

7.2 Longest increasing subsequence

Given an array that contains n numbers x1, x2, . . . , xn, our task is find the longest
increasing subsequence in the array. This is a sequence of array elements
that goes from the left to the right, and each element in the sequence is larger
than the previous element. For example, in the array

6 2 5 1 7 4 8 3

1 2 3 4 5 6 7 8

the longest increasing subsequence contains 4 elements:

6 2 5 1 7 4 8 3

1 2 3 4 5 6 7 8

Let f (k) be the length of the longest increasing subsequence that ends to index
k. Thus, the answer for the problem is the largest of values f (1), f (2), . . . , f (n).

68



For example, in the above array the values for the function are as follows:

f (1) = 1
f (2) = 1
f (3) = 2
f (4) = 1
f (5) = 3
f (6) = 2
f (7) = 4
f (8) = 2

When calculating the value f (k), there are two possibilities how the subse-
quence that ends to index k is constructed:

1. The subsequence only contains the element xk, so f (k)= 1.

2. We choose some index i for which i < k and xi < xk. We extend the longest
increasing subsequence that ends to index i by adding the element xk to it.
In this case f (k)= f (i)+1.

Consider calculating the value f (7). The best solution is to extend the longest
increasing subsequence that ends to index 5, i.e., the sequence [2,5,7], by adding
the element x7 = 8. The result is [2,5,7,8], and f (7)= f (5)+1= 4.

A straightforward way to calculate the value f (k) is to go through all indices
i = 1,2, . . . ,k−1 that can contain the previous element in the subsequence. The
time complexity of such an algorithm is O(n2). Surprisingly, it is also possible to
solve the problem in O(n logn) time, but this is more difficult.

7.3 Path in a grid

Our next problem is to find a path in an n×n grid from the upper-left corner to
the lower-right corner. Each square contains a number, and the path should be
constructed so that the sum of numbers along the path is as large as possible. In
addition, it is only allowed to move downwards and to the right.

In the followig grid, the best path is marked with gray background:

3 7 9 2 7

9 8 3 5 5

1 7 9 8 5

3 8 6 4 10

6 3 9 7 8

The sum of numbers is 3+9+8+7+9+8+5+10+8 = 67 that is the largest
possible sum in a path from the upper-left corner to the lower-right corner.

A good approach for the problem is to calculate for each square (y, x) the
largest possible sum in a path from the upper-left corner to the square (y, x). We

69



denote this sum f (y, x), so f (n,n) is the largest sum in a path from the upper-left
corner to the lower-right corner.

The recursive formula is based on the observation that a path that ends to
square(y, x) can either come from square (y, x−1) or from square (y−1, x):

→
↓

Let r(y, x) denote the number in square (y, x). The base cases for the recursive
function are as follows:

f (1,1) = r(1,1)
f (1, x) = f (1, x−1)+ r(1, x)
f (y,1) = f (y−1,1)+ r(y,1)

In the general case there are two possible paths, and we should select the
path that produces the larger sum:

f (y, x)=max( f (y, x−1), f (y−1, x))+ r(y, x)

The time complexity of the solution is O(n2), because each value f (y, x) can
be calculated in constant time using the values of the adjacent squares.

7.4 Knapsack

Knapsack is a classic problem where we are given n objects with weights
p1, p2, . . . , pn and values a1,a2, . . . ,an. Our task is to choose a subset of the
objects such that the sum of the weights is at most x and the sum of the values is
as large as possible.

For example, if the objects are

object weight value
A 5 1
B 6 3
C 8 5
D 5 3

and the maximum total weight is 12, the optimal solution is to select objects
B and D. Their total weight 6+5 = 11 doesn’t exceed 12, and their total value
3+3= 6 is as large as possible.

This task is possible to solve in two different ways using dynamic program-
ming. We can either regard the problem as maximizing the total value of the
objects or minimizing the total weight of the objects.

70



Solution 1

Maximization: Let f (k,u) denote the largest possible total value when a subset
of objects 1 . . .k is selected such that the total weight is u. The solution for the
problem is the largest value f (n,u) where 0 ≤ u ≤ x. A recursive formula for
calculating the function is

f (k,u)=max( f (k−1,u), f (k−1,u− pk)+ak)

because we can either include or not include object k in the solution. The base
cases are f (0,0) = 0 and f (0,u) = −∞ when u 6= 0. The time compexity of the
solution is O(nx).

In the example case, the optimal solution is f (4,11)= 6 that can be constructed
using the following sequence:

f (4,11)= f (3,6)+3= f (2,6)+3= f (1,0)+3+3= f (0,0)+3+3= 6.

Solution 2

Minimization: Let f (k,u) denote the smallest possible total weight when a subset
of objects 1 . . .k is selected such that the total weight is u. The solution for the
problem is the largest value u for which 0≤ u ≤ s and f (n,u)≤ x where s =∑n

i=1 ai.
A recursive formula for calculating the function is

f (k,u)=min( f (k−1,u), f (k−1,u−ak)+ pk).

as in solution 1. The base cases are f (0,0)= 0 and f (0,u)=∞ when u 6= 0. The
time complexity of the solution is O(ns).

In the example case, the optimal solution is f (4,6)= 11 that can be constructed
using the following sequence:

f (4,6)= f (3,3)+5= f (2,3)+5= f (1,0)+6+5= f (0,0)+6+5= 11.

It is interesting to note how the features of the input affect on the efficiency of
the solutions. The efficiency of solution 1 depends on the weights of the objects,
while the efficiency of solution 2 depends on the values of the objects.

7.5 Edit distance

The edit distance, also known as the Levenshtein distance, indicates how
similar two strings are. It is the minimum number of editing operations needed
for transforming the first string into the second string. The allowed editing
operations are as follows:

• insert a character (e.g. ABC → ABCA)

• remove a character (e.g. ABC → AC)

71



• change a character (e.g. ABC → ADC)

For example, the edit distance between LOVE and MOVIE is 2 because we can
first perform operation LOVE → MOVE (change) and then operation MOVE → MOVIE
(insertion). This is the smallest possible number of operations because it is clear
that one operation is not enough.

Suppose we are given strings x of n characters and y of m characters, and
we want to calculate the edit distance between them. This can be efficiently
done using dynamic programming in O(nm) time. Let f (a,b) denote the edit
distance between the first a characters of x and the first b characters of y. Using
this function, the edit distance between x and y is f (n,m), and the function also
determines the editing operations needed.

The base cases for the function are

f (0,b) = b
f (a,0) = a

and in the general case the formula is

f (a,b)=min( f (a,b−1)+1, f (a−1,b)+1, f (a−1,b−1)+ c),

where c = 0 if the ath character of x equals the bth character of y, and otherwise
c = 1. The formula covers all ways to shorten the strings:

• f (a,b−1) means that a character is inserted to x

• f (a−1,b) means that a chacater is removed from x

• f (a−1,b−1) means that x and y contain the same character (c = 0), or a
character in x is transformed into a character in y (c = 1)

The following table shows the values of f in the example case:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

The lower-right corner of the table indicates that the edit distance between
LOVE and MOVIE is 2. The table also shows how to construct the shortest sequence
of editing operations. In this case the path is as follows:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

72



The last characters of LOVE and MOVIE are equal, so the edit distance between
them equals the edit distance between LOV and MOVI. We can use one editing
operation to remove the character I from MOVI. Thus, the edit distance is one
larger than the edit distance between LOV and MOV, etc.

7.6 Tilings
Sometimes the dynamic programming state is more complex than a fixed combi-
nation of numbers. As an example, we consider a problem where our task is to
calculate the number of different ways to fill an n×m grid using 1×2 and 2×1
size tiles. For example, one valid solution for the 4×7 grid is

and the total number of solutions is 781.
The problem can be solved using dynamic programming by going through

the grid row by row. Each row in a solution can be represented as a string that
contains m characters from the set {u,t,@,A}. For example, the above solution
consists of four rows that correspond to the following strings:

• u@Au@Au
• t@Atuut
• @A@Attu
• @A@A@At
Let f (k, x) denote the number of ways to construct a solution for the rows

1 . . .k in the grid so that string x corresponds to row k. It is possible to use
dynamic programing here because the state of a row is constrained only be the
state of the previous row.

A solution is valid if row 1 doesn’t contain the character t, row n doesn’t
contain the character u, and all successive rows are compatible. For example, the
rows t@Atuut and @A@Attu are compatible, while the rows u@Au@Au
and @A@A@At are not compatible.

Since a row consists of m characters and there are four choices for each
character, the number of different rows is at most 4m. Thus, the time complexity
of the solution is O(n42m) because we can check the O(4m) possible states for
each row, and for each state, there are O(4m) possible states for the previous row.
In practice, it’s a good idea to rotate the grid so that the shorter side has length
m because the factor 42m dominates the time complexity.

It is possible to make the solution more efficient by using a better representa-
tion for the rows as strings. It turns out that it is sufficient to know the columns

73



of the previous row that contain the first square of a vertical tile. Thus, we can
represent a row using only characters u and � where � is a combination of
characters t, @ and A. In this case, there are only 2m distinct rows and the time
complexity becomes O(n22m).

As a final note, there is also a surprising direct formula for calculating the
number of tilings:

dn/2e∏
a=1

dm/2e∏
b=1

4 · (cos2 πa
n+1

+cos2 πb
m+1

).

This formula is very efficient because it calculates the number of tilings on O(nm)
time, but since the answer is a product of real numbers, a practical problem in
using the formula is how to store the intermediate results accurately.

74



Part II

Graph algorithms

75





Part III

Advanced topics

77





Index

arithmetic sum, 10

backtracking, 48
binary code, 60
binary search, 29
bitset, 39
bitset, 39
bubble sort, 23

codeword, 60
comparison function, 29
comparison operator, 28
complement, 11
complexity classes, 18
conjuction, 12
constant factor, 19
constant-time algorithm, 18
counting sort, 27
cubic algorithm, 18

data compression, 60
data structure, 33
deque, 40
deque, 40
difference, 11
disjunction, 12
dynamic array, 33
dynamic programming, 63

edit distance, 71
equivalence, 12

factorial, 13
Fibonacci number, 13
floating point number, 7

geometric sum, 10
greedy algorithm, 55

hakemisto, 36
harmonic sum, 11

heap, 41
Huffman coding, 61

implication, 12
input and output, 4
integer, 6
intersection, 11
inversion, 24
iterator, 37

knapsack, 70

Levenshtein distance, 71
linear algorithm, 18
logarithm, 14
logarithmic algorithm, 18
logic, 12
longest increasing subsequence, 68

macro, 9
map, 36
maximum subarray sum, 19
meet in the middle, 52
memoization, 65
merge sort, 25
modular arithmetic, 6
multiset, 36

natural logarithm, 14
negation, 12
next_permutation, 47
NP-hard problem, 18

pair, 28
permutation, 47
polynomial algorithm, 18
predicate, 12
priority queue, 41
priority_queue, 41
programming language, 3

quadratic algorithm, 18

79



quantifier, 12
queen problem, 48
queue, 41
queue, 41

random_shuffle, 37
remainder, 6
reverse, 37

set, 11, 35
set, 35
set theory, 11
sort, 27, 37
sorting, 23
stack, 40
stack, 40
string, 34
string, 34
subset, 11, 45

time complexity, 15
tuple, 28
typedef, 8

union, 11
universal set, 11
unordered_map, 36
unordered_multiset, 36
unordered_set, 35

vector, 33
vector, 33

80


	Preface
	I Basic techniques
	Introduction
	Programming languages
	Input and output
	Handling numbers
	Shortening code
	Mathematics

	Time complexity
	Calculation rules
	Complexity classes
	Estimating efficiency
	Maximum subarray sum

	Sorting
	Sorting theory
	Sorting in C++
	Binary search

	Data structures
	Dynamic array
	Set structure
	Map structure
	Iterators and ranges
	Other structures
	Comparison to sorting

	Complete search
	Generating subsets
	Generating permutations
	Backtracking
	Pruning the search
	Meet in the middle

	Greedy algorithms
	Coin problem
	Scheduling
	Tasks and deadlines
	Minimizing sums
	Data compression

	Dynamic programming
	Coin problem
	Longest increasing subsequence
	Path in a grid
	Knapsack
	Edit distance
	Tilings


	II Graph algorithms
	III Advanced topics

