cphb/luku20.tex

1367 lines
50 KiB
TeX
Raw Normal View History

2017-01-10 21:33:14 +01:00
\chapter{Flows and cuts}
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
In this chapter, we will focus on the following
2017-02-07 23:36:49 +01:00
two problems:
2016-12-28 23:54:51 +01:00
\begin{itemize}
2017-01-10 21:33:14 +01:00
\item \key{Finding a maximum flow}:
What is the maximum amount of flow we can
2017-02-07 23:36:49 +01:00
send from a node to another node?
2017-01-10 21:33:14 +01:00
\item \key{Finding a minimum cut}:
What is a minimum-weight set of edges
2017-02-07 23:36:49 +01:00
that separates two nodes of the graph?
2016-12-28 23:54:51 +01:00
\end{itemize}
2017-02-07 23:36:49 +01:00
The input for both these problems is a directed,
weighted graph that contains two special nodes:
the \key{source} is a node with no incoming edges,
and the \key{sink} is a node with no outgoing edges.
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
As an example, we will use the following graph
2017-02-07 23:36:49 +01:00
where node 1 is the source and node 6
is the sink:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (7,2) {$6$};
\node[draw, circle] (5) at (3,1) {$4$};
\node[draw, circle] (6) at (5,1) {$5$};
\path[draw,thick,->] (1) -- node[font=\small,label=5] {} (2);
\path[draw,thick,->] (2) -- node[font=\small,label=6] {} (3);
\path[draw,thick,->] (3) -- node[font=\small,label=5] {} (4);
\path[draw,thick,->] (1) -- node[font=\small,label=below:4] {} (5);
\path[draw,thick,->] (5) -- node[font=\small,label=below:1] {} (6);
\path[draw,thick,->] (6) -- node[font=\small,label=below:2] {} (4);
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3] {} (5);
\path[draw,thick,->] (3) -- node[font=\small,label=left:8] {} (6);
\end{tikzpicture}
\end{center}
2017-01-10 21:33:14 +01:00
\subsubsection{Maximum flow}
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
\index{flow}
\index{maximum flow}
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
In the \key{maximum flow} problem,
our task is to send as much flow as possible
from the source to the sink.
2017-01-10 21:33:14 +01:00
The weight of each edge is a capacity that
2017-02-07 23:36:49 +01:00
restricts the flow
that can go through the edge.
In each intermediate node,
the incoming and outgoing
flow has to be equal.
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
For example, the size of the maximum flow
in the example graph is 7.
The following picture shows how we can
route the flow:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (7,2) {$6$};
\node[draw, circle] (5) at (3,1) {$4$};
\node[draw, circle] (6) at (5,1) {$5$};
\path[draw,thick,->] (1) -- node[font=\small,label=3/5] {} (2);
\path[draw,thick,->] (2) -- node[font=\small,label=6/6] {} (3);
\path[draw,thick,->] (3) -- node[font=\small,label=5/5] {} (4);
\path[draw,thick,->] (1) -- node[font=\small,label=below:4/4] {} (5);
\path[draw,thick,->] (5) -- node[font=\small,label=below:1/1] {} (6);
\path[draw,thick,->] (6) -- node[font=\small,label=below:2/2] {} (4);
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3/3] {} (5);
\path[draw,thick,->] (3) -- node[font=\small,label=left:1/8] {} (6);
\end{tikzpicture}
\end{center}
2017-01-10 21:33:14 +01:00
The notation $v/k$ means
2017-02-07 23:36:49 +01:00
a flow of $v$ units is routed through
an edge whose capacity is $k$ units.
The size of the flow is $7$,
because the source sends $3+4$ units of flow
and the sink receives $5+2$ units of flow.
It is easy see that this flow is maximum,
because the total capacity of the edges
leading to the sink is $7$.
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
\subsubsection{Minimum cut}
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
\index{cut}
\index{minimum cut}
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
In the \key{minimum cut} problem,
our task is to remove a set
of edges from the graph
such that there will be no path from the source
to the sink after the removal
and the total weight of the removed edges
is minimum.
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
The size of the minimum cut in the example graph is 7.
It suffices to remove the edges $2 \rightarrow 3$
and $4 \rightarrow 5$:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (7,2) {$6$};
\node[draw, circle] (5) at (3,1) {$4$};
\node[draw, circle] (6) at (5,1) {$5$};
\path[draw,thick,->] (1) -- node[font=\small,label=5] {} (2);
\path[draw,thick,->] (2) -- node[font=\small,label=6] {} (3);
\path[draw,thick,->] (3) -- node[font=\small,label=5] {} (4);
\path[draw,thick,->] (1) -- node[font=\small,label=below:4] {} (5);
\path[draw,thick,->] (5) -- node[font=\small,label=below:1] {} (6);
\path[draw,thick,->] (6) -- node[font=\small,label=below:2] {} (4);
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3] {} (5);
\path[draw,thick,->] (3) -- node[font=\small,label=left:8] {} (6);
\path[draw=red,thick,-,line width=2pt] (4-.3,3-.3) -- (4+.3,3+.3);
\path[draw=red,thick,-,line width=2pt] (4-.3,3+.3) -- (4+.3,3-.3);
\path[draw=red,thick,-,line width=2pt] (4-.3,1-.3) -- (4+.3,1+.3);
\path[draw=red,thick,-,line width=2pt] (4-.3,1+.3) -- (4+.3,1-.3);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
After removing the edges,
there will be no path from the source to the sink.
The size of the cut is $7$,
because the weights of the removed edges
are $6$ and $1$.
The cut is minimum, because there is no valid
way to remove edges from the graph such that
their total weight would be less than $7$.
2016-12-28 23:54:51 +01:00
\\\\
2017-01-10 21:33:14 +01:00
It is not a coincidence that
both the size of the maximum flow and
2017-02-07 23:36:49 +01:00
the minimum cut is 7 in the above example.
It turns out that the size of the maximum flow
and the minimum cut is
\emph{always} the same,
2017-01-10 21:33:14 +01:00
so the concepts are two sides of the same coin.
Next we will discuss the FordFulkerson
algorithm that can be used for finding
2017-02-07 23:36:49 +01:00
the maximum flow and minimum cut of a graph.
2017-01-10 21:33:14 +01:00
The algorithm also helps us to understand
\emph{why} they are equally large.
\section{FordFulkerson algorithm}
\index{FordFulkerson algorithm}
The \key{FordFulkerson algorithm} finds
2017-02-07 23:36:49 +01:00
the maximum flow in a graph.
2017-01-10 21:33:14 +01:00
The algorithm begins with an empty flow,
and at each step finds a path in the graph
that generates more flow.
2017-02-07 23:36:49 +01:00
Finally, when the algorithm cannot increase the flow
anymore, it terminates and the maximum flow has been found.
2017-01-10 21:33:14 +01:00
The algorithm uses a special representation
2017-02-07 23:36:49 +01:00
of the graph where each original edge has a reverse
2017-01-10 21:33:14 +01:00
edge in another direction.
The weight of each edge indicates how much more flow
2017-02-07 23:36:49 +01:00
we might route through it.
At the beginning of the algorithm, the weight of each original edge
equals the capacity of the edge
2017-01-10 21:33:14 +01:00
and the weight of each reverse edge is zero.
2016-12-28 23:54:51 +01:00
\begin{samepage}
2017-01-10 21:33:14 +01:00
The new representation for the example graph is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=5] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=6] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:0] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=2] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:8] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:0] {} (3);
\end{tikzpicture}
\end{center}
\end{samepage}
2017-02-07 23:36:49 +01:00
\subsubsection{Algorithm description}
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
The FordFulkerson algorithm consists of several
rounds.
On each round, the algorithm finds
a path from the source to the sink
such that each edge on the path has a positive weight.
If there is more than one possible path available,
2017-01-10 21:33:14 +01:00
we can choose any of them.
2016-12-28 23:54:51 +01:00
2017-02-07 23:36:49 +01:00
For example, suppose we choose the following path:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=5] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=6] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:0] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=2] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:8] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:0] {} (3);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend left=10] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend left=10] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend left=10] (6);
\path[draw=red,thick,->,line width=2pt] (6) edge [bend left=10] (4);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
After choosing the path, the flow increases by $x$ units,
where $x$ is the smallest edge weight on the path.
In addition, the weight of each edge on the path
2017-01-10 21:33:14 +01:00
decreases by $x$, and the weight of each reverse edge
increases by $x$.
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
In the above path, the weights of the
edges are 5, 6, 8 and 2.
2017-02-07 23:36:49 +01:00
The smallest weight is 2,
2017-01-10 21:33:14 +01:00
so the flow increases by 2
and the new graph is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=4] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:2] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
\end{tikzpicture}
\end{center}
2017-01-10 21:33:14 +01:00
The idea is that increasing the flow decreases the amount of
flow that can go through the edges in the future.
2017-02-07 23:36:49 +01:00
On the other hand, it is possible to modify the
flow later using the reverse edges of the graph
if it turns out that
it would be beneficial to route the flow in another way.
2016-12-28 23:54:51 +01:00
2017-01-10 21:33:14 +01:00
The algorithm increases the flow as long as
2017-02-07 23:36:49 +01:00
there is a path from the source
to the sink through positive-weight edges.
In the present example, our next path can be as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=4] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:2] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
\path[draw=red,thick,->,line width=2pt] (1) edge [bend left=10] (5);
\path[draw=red,thick,->,line width=2pt] (5) edge [bend left=10] (2);
\path[draw=red,thick,->,line width=2pt] (2) edge [bend left=10] (3);
\path[draw=red,thick,->,line width=2pt] (3) edge [bend left=10] (4);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
The minimum edge weight on this path is 3,
2017-01-10 21:33:14 +01:00
so the path increases the flow by 3,
2017-02-07 23:36:49 +01:00
and the total flow after processing the path is 5.
2016-12-28 23:54:51 +01:00
\begin{samepage}
2017-01-10 21:33:14 +01:00
The new graph will be as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=1] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:5] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=2] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:3] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=1] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:3] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
\end{tikzpicture}
\end{center}
\end{samepage}
2017-02-07 23:36:49 +01:00
We still need two more rounds before reaching the maximum flow.
2017-01-10 21:33:14 +01:00
For example, we can choose the paths
$1 \rightarrow 2 \rightarrow 3 \rightarrow 6$ and
$1 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6$.
Both paths increase the flow by 1,
and the final graph is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle] (1) at (1,1.3) {$1$};
\node[draw, circle] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=2] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:3] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=0] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:6] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:5] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=0] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:4] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=0] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:1] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:7] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:1] {} (3);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
It is not possible to increase the flow anymore,
because there is no path from the source
to the sink with positive edge weights.
Hence, the algorithm terminates and the maximum flow is 7.
2017-01-10 21:33:14 +01:00
\subsubsection{Finding paths}
2017-02-07 23:36:49 +01:00
The FordFulkerson algorithm does not specify
how paths that increase the flow should be chosen.
In any case, the algorithm will terminate sooner or later
and correctly find the maximum flow.
2017-01-10 21:33:14 +01:00
However, the efficiency of the algorithm depends on
the way the paths are chosen.
A simple way to find paths is to use depth-first search.
2017-02-07 23:36:49 +01:00
Usually, this works well, but in the worst case,
each path only increases the flow by 1
and the algorithm is slow.
Fortunately, we can avoid this situation
by using one of the following algorithms:
2017-01-10 21:33:14 +01:00
\index{EdmondsKarp algorithm}
The \key{EdmondsKarp algorithm}
2017-02-07 23:36:49 +01:00
is a variant of the
FordFulkerson algorithm that
chooses each path so that the number of edges
on the path is as small as possible.
2017-01-10 21:33:14 +01:00
This can be done by using breadth-first search
2017-02-07 23:36:49 +01:00
instead of depth-first search for finding paths.
2017-01-10 21:33:14 +01:00
It turns out that this guarantees that
2017-02-07 23:36:49 +01:00
the flow increases quickly, and the time complexity
2017-01-10 21:33:14 +01:00
of the algorithm is $O(m^2 n)$.
\index{scaling algorithm}
The \key{scaling algorithm} uses depth-first
2017-02-07 23:36:49 +01:00
search to find paths where each edge weight is
at least a threshold value.
Initially, the threshold value is
2017-01-10 21:33:14 +01:00
the sum of capacities of the edges that
2017-02-07 23:36:49 +01:00
start at the source.
Always when a path cannot be found,
the threshold value is divided by 2.
The time complexity of the algorithm is $O(m^2 \log c)$,
where $c$ is the initial threshold value.
In practice, the scaling algorithm is easier to implement,
because depth-first search can be used for finding paths.
2017-01-10 21:33:14 +01:00
Both algorithms are efficient enough for problems
that typically appear in programming contests.
\subsubsection{Minimum cut}
\index{minimum cut}
It turns out that once the FordFulkerson algorithm
has found a maximum flow,
2017-02-07 23:36:49 +01:00
it has also found a minimum cut.
2017-01-10 21:33:14 +01:00
Let $A$ be the set of nodes
2017-02-07 23:36:49 +01:00
that can be reached from the source
using positive-weight edges.
2017-01-10 21:33:14 +01:00
In the example graph, $A$ contains nodes 1, 2 and 4:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
\node[draw, circle,fill=lightgray] (1) at (1,1.3) {$1$};
\node[draw, circle,fill=lightgray] (2) at (3,2.6) {$2$};
\node[draw, circle] (3) at (5,2.6) {$3$};
\node[draw, circle] (4) at (7,1.3) {$6$};
\node[draw, circle,fill=lightgray] (5) at (3,0) {$4$};
\node[draw, circle] (6) at (5,0) {$5$};
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=2] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:3] {} (1);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=0] {} (3);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:6] {} (2);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:5] {} (3);
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=0] {} (5);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:4] {} (1);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=0] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:1] {} (5);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:7] {} (6);
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:1] {} (3);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
Now the minimum cut consists of the edges of the original graph
that start at some node in $A$, end at some node outside $A$,
2017-01-10 21:33:14 +01:00
and whose capacity is fully
used in the maximum flow.
In the above graph, such edges are
$2 \rightarrow 3$ and $4 \rightarrow 5$,
that correspond to the minimum cut $6+1=7$.
2017-02-07 23:36:49 +01:00
Why is the flow produced by the algorithm maximum
2017-01-10 21:33:14 +01:00
and why is the cut minimum?
2017-02-07 23:36:49 +01:00
The reason is that a graph cannot
contain a flow whose size is larger
2017-01-10 21:33:14 +01:00
than the weight of any cut in the graph.
Hence, always when a flow and a cut are equally large,
they are a maximum flow and a minimum cut.
2017-02-07 23:36:49 +01:00
Let us consider any cut in the graph
such that the source belongs to $A$,
the sink belongs to $B$
2017-01-10 21:33:14 +01:00
and there are edges between the sets:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\draw[dashed] (-2,0) circle (1.5);
\draw[dashed] (2,0) circle (1.5);
\node at (-2,-1) {$A$};
\node at (2,-1) {$B$};
\node[draw, circle] (1) at (-1,0.5) {};
\node[draw, circle] (2) at (-1,0) {};
\node[draw, circle] (3) at (-1,-0.5) {};
\node[draw, circle] (4) at (1,0.5) {};
\node[draw, circle] (5) at (1,0) {};
\node[draw, circle] (6) at (1,-0.5) {};
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (5) -- (2);
\path[draw,thick,->] (3) -- (6);
\end{tikzpicture}
\end{center}
2017-02-07 23:36:49 +01:00
The size of the cut is the sum of the edges
that go from the set $A$ to the set $B$.
This is an upper bound for the flow
2017-01-10 21:33:14 +01:00
in the graph, because the flow has to proceed
2017-02-07 23:36:49 +01:00
from the set $A$ to the set $B$.
2017-01-10 21:33:14 +01:00
Thus, a maximum flow is smaller than or equal to
any cut in the graph.
On the other hand, the FordFulkerson algorithm
produces a flow that is \emph{exactly} as large
as a cut in the graph.
Thus, the flow has to be a maximum flow,
and the cut has to be a minimum cut.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
\section{Parallel paths}
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
As a first application for flows,
we consider a problem where the task is to
form as many parallel paths as possible
from the starting node of the graph
to the ending node.
It is required that no edge appears
in more than one path.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
For example, in the graph
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\node[draw, circle] (5) at (5,1) {$5$};
\node[draw, circle] (6) at (7,2) {$6$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (2) -- (4);
\path[draw,thick,->] (3) -- (2);
\path[draw,thick,->] (3) -- (5);
\path[draw,thick,->] (3) -- (6);
\path[draw,thick,->] (4) -- (3);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
we can form two parallel paths from node 1 to node 6.
This can be done by choosing paths
2016-12-28 23:54:51 +01:00
$1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 6$
2017-01-10 22:34:36 +01:00
and $1 \rightarrow 4 \rightarrow 5 \rightarrow 6$:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\node[draw, circle] (5) at (5,1) {$5$};
\node[draw, circle] (6) at (7,2) {$6$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (2) -- (4);
\path[draw,thick,->] (3) -- (2);
\path[draw,thick,->] (3) -- (5);
\path[draw,thick,->] (3) -- (6);
\path[draw,thick,->] (4) -- (3);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\path[draw=green,thick,->,line width=2pt] (1) -- (2);
\path[draw=green,thick,->,line width=2pt] (2) -- (4);
\path[draw=green,thick,->,line width=2pt] (4) -- (3);
\path[draw=green,thick,->,line width=2pt] (3) -- (6);
\path[draw=blue,thick,->,line width=2pt] (1) -- (4);
\path[draw=blue,thick,->,line width=2pt] (4) -- (5);
\path[draw=blue,thick,->,line width=2pt] (5) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
It turns out that the maximum number of parallel paths
equals the maximum flow in the graph when the weight
of each edge is 1.
After the maximum flow has been constructed,
the parallel paths can be found greedily by finding
paths from the starting node to the ending node.
Let's then consider a variation for the problem
where each node (except for the starting and ending nodes)
can appear in at most one path.
After this restriction, we can construct only one path
in the above graph, because node 4 can't appear
in more than one path:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\node[draw, circle] (5) at (5,1) {$5$};
\node[draw, circle] (6) at (7,2) {$6$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (1) -- (4);
\path[draw,thick,->] (2) -- (4);
\path[draw,thick,->] (3) -- (2);
\path[draw,thick,->] (3) -- (5);
\path[draw,thick,->] (3) -- (6);
\path[draw,thick,->] (4) -- (3);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\path[draw=green,thick,->,line width=2pt] (1) -- (2);
\path[draw=green,thick,->,line width=2pt] (2) -- (4);
\path[draw=green,thick,->,line width=2pt] (4) -- (3);
\path[draw=green,thick,->,line width=2pt] (3) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
A standard way to restrict the flow through a node
is to divide the node into two parts.
All incoming edges are connected to the first part,
and all outgoing edges are connected to the second part.
In addition, there is an edge from the first part
to the second part.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
In the current example, the graph becomes as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2a) at (3,3) {$2$};
\node[draw, circle] (3a) at (6,3) {$3$};
\node[draw, circle] (4a) at (3,1) {$4$};
\node[draw, circle] (5a) at (6,1) {$5$};
\node[draw, circle] (2b) at (4,3) {$2$};
\node[draw, circle] (3b) at (7,3) {$3$};
\node[draw, circle] (4b) at (4,1) {$4$};
\node[draw, circle] (5b) at (7,1) {$5$};
\node[draw, circle] (6) at (9,2) {$6$};
\path[draw,thick,->] (2a) -- (2b);
\path[draw,thick,->] (3a) -- (3b);
\path[draw,thick,->] (4a) -- (4b);
\path[draw,thick,->] (5a) -- (5b);
\path[draw,thick,->] (1) -- (2a);
\path[draw,thick,->] (1) -- (4a);
\path[draw,thick,->] (2b) -- (4a);
\path[draw,thick,->] (3b) edge [bend right=30] (2a);
\path[draw,thick,->] (3b) -- (5a);
\path[draw,thick,->] (3b) -- (6);
\path[draw,thick,->] (4b) -- (3a);
\path[draw,thick,->] (4b) -- (5a);
\path[draw,thick,->] (5b) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
The maximum flow for the graph is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,2) {$1$};
\node[draw, circle] (2a) at (3,3) {$2$};
\node[draw, circle] (3a) at (6,3) {$3$};
\node[draw, circle] (4a) at (3,1) {$4$};
\node[draw, circle] (5a) at (6,1) {$5$};
\node[draw, circle] (2b) at (4,3) {$2$};
\node[draw, circle] (3b) at (7,3) {$3$};
\node[draw, circle] (4b) at (4,1) {$4$};
\node[draw, circle] (5b) at (7,1) {$5$};
\node[draw, circle] (6) at (9,2) {$6$};
\path[draw,thick,->] (2a) -- (2b);
\path[draw,thick,->] (3a) -- (3b);
\path[draw,thick,->] (4a) -- (4b);
\path[draw,thick,->] (5a) -- (5b);
\path[draw,thick,->] (1) -- (2a);
\path[draw,thick,->] (1) -- (4a);
\path[draw,thick,->] (2b) -- (4a);
\path[draw,thick,->] (3b) edge [bend right=30] (2a);
\path[draw,thick,->] (3b) -- (5a);
\path[draw,thick,->] (3b) -- (6);
\path[draw,thick,->] (4b) -- (3a);
\path[draw,thick,->] (4b) -- (5a);
\path[draw,thick,->] (5b) -- (6);
\path[draw=red,thick,->,line width=2pt] (1) -- (2a);
\path[draw=red,thick,->,line width=2pt] (2a) -- (2b);
\path[draw=red,thick,->,line width=2pt] (2b) -- (4a);
\path[draw=red,thick,->,line width=2pt] (4a) -- (4b);
\path[draw=red,thick,->,line width=2pt] (4b) -- (3a);
\path[draw=red,thick,->,line width=2pt] (3a) -- (3b);
\path[draw=red,thick,->,line width=2pt] (3b) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
This means that it is possible to form exactly
one path from the starting node to the ending node
when a node can't appear in more than one path.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
\section{Maximum matching}
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
\index{matching}
\index{maximum matching}
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
A \key{maximum matching} is the largest possible
set of pairs of nodes in a graph
such that there is an edge between each pair of nodes,
and each node belongs to at most one pair.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
There is a polynomial algorithm for finding
a maximum matching in a general graph,
but it is very complex.
For this reason, we will restrict ourselves to the
case where the graph is bipartite.
In this case we can easily find the maximum matching
using a maximum flow algorithm.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
\subsubsection{Finding a maximum matching}
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
A bipartite graph can be always presented so
that it consists of left-side and right-side nodes,
and all edges in the graph go between
left and right sides.
As an example, consider the following graph:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
In this graph, the size of a maximum matching is 3:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\path[draw=red,thick,-,line width=2pt] (1) -- (5);
\path[draw=red,thick,-,line width=2pt] (2) -- (7);
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
A maximum matching in a bipartite graph
corresponds to a maximum flow in an extended graph
that contains a starting node,
an ending node and all the nodes of the original graph.
There is an edge from the starting node to
each left-side node, and an edge from
each right-side node to the ending node.
The capacity of each edge is 1.
2016-12-28 23:54:51 +01:00
2017-01-10 22:34:36 +01:00
In the example graph, the result is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\node[draw, circle] (a) at (-2,2.25) {\phantom{0}};
\node[draw, circle] (b) at (12,2.25) {\phantom{0}};
\path[draw,thick,->] (1) -- (5);
\path[draw,thick,->] (2) -- (7);
\path[draw,thick,->] (3) -- (5);
\path[draw,thick,->] (3) -- (6);
\path[draw,thick,->] (3) -- (8);
\path[draw,thick,->] (4) -- (7);
\path[draw,thick,->] (a) -- (1);
\path[draw,thick,->] (a) -- (2);
\path[draw,thick,->] (a) -- (3);
\path[draw,thick,->] (a) -- (4);
\path[draw,thick,->] (5) -- (b);
\path[draw,thick,->] (6) -- (b);
\path[draw,thick,->] (7) -- (b);
\path[draw,thick,->] (8) -- (b);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
The size of a maximum flow in this graph
equals the size of a maximum matching
in the original graph,
because each path from the starting node
to the ending node adds one edge to the matching.
In this graph, the maximum flow is 3,
so the maximum matching is also 3.
\subsubsection{Hall's theorem}
\index{Hall's theorem}
\index{perfect matching}
\key{Hall's theorem} describes when a bipartite graph
has a matching that contains all nodes
in one side of the graph.
If both sides contain the same number of nodes,
Hall's theorem tells us if it's possible to
construct a \key{perfect matching} where
all nodes are paired with each other.
Assume that we want to construct a matching
that contains all left-side nodes.
Let $X$ be a set of left-side nodes,
and let $f(X)$ be the set of their neighbors.
According to Hall's theorem, a such matching exists
exactly when for each $X$, the condition $|X| \le |f(X)|$ holds.
Let's study Hall's theorem in the example graph.
First, let $X=\{1,3\}$ and $f(X)=\{5,6,8\}$:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle, fill=lightgray] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle, fill=lightgray] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle, fill=lightgray] (5) at (8,4.5) {5};
\node[draw, circle, fill=lightgray] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle, fill=lightgray] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
The condition of Hall's theorem holds, because
$|X|=2$ and $|f(X)|=3$.
Next, let $X=\{2,4\}$ and $f(X)=\{7\}$:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle, fill=lightgray] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle, fill=lightgray] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle, fill=lightgray] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
In this case, $|X|=2$ and $|f(X)|=1$,
so the condition of Hall's theorem doesn't hold.
This means that it's not possible to form
a perfect matching in the graph.
This result is not surprising, because we already
knew that the maximum matching in the graph is 3 and not 4.
If the condition of Hall's theorem doesn't hold,
the set $X$ provides an explanation why we can't form a matching.
Since $X$ contains more nodes than $f(X)$,
there is no pair for all nodes in $X$.
For example, in the above graph, both nodes 2 and 4
should be connected to node 7 which is not possible.
\subsubsection{Kőnig's theorem}
\index{Kőnig's theorem}
\index{node cover}
\index{minimum node cover}
\key{Kőnig's theorem} provides an efficient way
to construct a \key{minimum node cover} for a
bipartite graph.
This is a minimum set of nodes such that
each edge in the graph is connected to at least
one node in the set.
In a general graph, finding a minimum node cover
is a NP-hard problem.
However, in a bipartite graph,
the size of
a maximum matching and a minimum node cover
is always the same, according to Kőnig's theorem.
Thus, we can efficiently find a minimum node cover
using a maximum flow algorithm.
Let's consider the following graph
with a maximum matching of size 3:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\path[draw=red,thick,-,line width=2pt] (1) -- (5);
\path[draw=red,thick,-,line width=2pt] (2) -- (7);
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
Using Kőnig's theorem, we know that the size
of a minimum node cover is also 3.
It can be constructed as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle, fill=lightgray] (1) at (2,4.5) {1};
\node[draw, circle] (2) at (2,3) {2};
\node[draw, circle, fill=lightgray] (3) at (2,1.5) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (8,4.5) {5};
\node[draw, circle] (6) at (8,3) {6};
\node[draw, circle, fill=lightgray] (7) at (8,1.5) {7};
\node[draw, circle] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:34:36 +01:00
For each edge in the maximum matching,
exactly one of its end nodes belongs to
the minimum node cover.
\index{independent set}
\index{maximum independent set}
The set of all nodes that do \emph{not}
belong to a minimum node cover
2017-01-10 22:56:44 +01:00
forms a \key{maximum independent set}.
2017-01-10 22:34:36 +01:00
This is the largest possible set of nodes
where there is no edge between any two nodes
in the graph.
Once again, finding a maximum independent
set in a general graph is a NP-hard problem,
but in a bipartite graph we can use
Kőnig's theorem to solve the problem efficiently.
In the example graph, the maximum independent
set is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.60]
\node[draw, circle] (1) at (2,4.5) {1};
\node[draw, circle, fill=lightgray] (2) at (2,3) {2};
\node[draw, circle] (3) at (2,1.5) {3};
\node[draw, circle, fill=lightgray] (4) at (2,0) {4};
\node[draw, circle, fill=lightgray] (5) at (8,4.5) {5};
\node[draw, circle, fill=lightgray] (6) at (8,3) {6};
\node[draw, circle] (7) at (8,1.5) {7};
\node[draw, circle, fill=lightgray] (8) at (8,0) {8};
\path[draw,thick,-] (1) -- (5);
\path[draw,thick,-] (2) -- (7);
\path[draw,thick,-] (3) -- (5);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (3) -- (8);
\path[draw,thick,-] (4) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
\section{Path covers}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
\index{path cover}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
A \key{path cover} is a set of paths in a graph
that is chosen so that each node in the graph
belongs to at least one path.
It turns out that we can reduce the problem
of finding a minimum path cover in a
directed, acyclic graph into a maximum flow problem.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
There are two variations for the problem:
In a \key{node-disjoint cover},
every node appears in exactly one path,
and in a \key{general cover},
a node may appear in more than one path.
In both cases, the minimum path cover can be
found using a similar idea.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
\subsubsection{Node-disjoint cover}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
As an example, consider the following graph:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (2) at (2,0) {2};
\node[draw, circle] (3) at (4,0) {3};
\node[draw, circle] (4) at (6,0) {4};
\node[draw, circle] (5) at (0,-2) {5};
\node[draw, circle] (6) at (2,-2) {6};
\node[draw, circle] (7) at (4,-2) {7};
\path[draw,thick,->,>=latex] (1) -- (5);
\path[draw,thick,->,>=latex] (2) -- (6);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (5) -- (6);
\path[draw,thick,->,>=latex] (6) -- (3);
\path[draw,thick,->,>=latex] (6) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
In this case, the minimum node-disjoint path cover
consists of three paths.
For example, we can choose the following paths:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (2) at (2,0) {2};
\node[draw, circle] (3) at (4,0) {3};
\node[draw, circle] (4) at (6,0) {4};
\node[draw, circle] (5) at (0,-2) {5};
\node[draw, circle] (6) at (2,-2) {6};
\node[draw, circle] (7) at (4,-2) {7};
\path[draw=red,thick,->,line width=2pt] (1) -- (5);
\path[draw=red,thick,->,line width=2pt] (5) -- (6);
\path[draw=red,thick,->,line width=2pt] (6) -- (7);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
Note that one of the paths only contains node 2,
so it is possible that a path doesn't contain any edges.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
Finding a path cover can be interpreted as finding
a maximum matching in a graph where each node
in the original graph is represented by two nodes:
a left node and a right node.
There is an edge from a left node to a right node,
if there is such an edge in the original graph.
The idea is that the matching determines which
edges belong to paths in the original graph.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
The matching in the example case is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1a) at (0,6) {1};
\node[draw, circle] (2a) at (0,5) {2};
\node[draw, circle] (3a) at (0,4) {3};
\node[draw, circle] (4a) at (0,3) {4};
\node[draw, circle] (5a) at (0,2) {5};
\node[draw, circle] (6a) at (0,1) {6};
\node[draw, circle] (7a) at (0,0) {7};
\node[draw, circle] (1b) at (4,6) {1};
\node[draw, circle] (2b) at (4,5) {2};
\node[draw, circle] (3b) at (4,4) {3};
\node[draw, circle] (4b) at (4,3) {4};
\node[draw, circle] (5b) at (4,2) {5};
\node[draw, circle] (6b) at (4,1) {6};
\node[draw, circle] (7b) at (4,0) {7};
\node[draw, circle] (a) at (-3,3) {\phantom{0}};
\node[draw, circle] (b) at (7,3) {\phantom{0}};
%\path[draw,thick,->,>=latex] (1a) -- (5b);
\path[draw,thick,->,>=latex] (2a) -- (6b);
%\path[draw,thick,->,>=latex] (3a) -- (4b);
%\path[draw,thick,->,>=latex] (5a) -- (6b);
\path[draw,thick,->,>=latex] (6a) -- (3b);
%\path[draw,thick,->,>=latex] (6a) -- (7b);
\path[draw,thick,->,>=latex] (a) -- (1a);
\path[draw,thick,->,>=latex] (a) -- (2a);
\path[draw,thick,->,>=latex] (a) -- (3a);
\path[draw,thick,->,>=latex] (a) -- (4a);
\path[draw,thick,->,>=latex] (a) -- (5a);
\path[draw,thick,->,>=latex] (a) -- (6a);
\path[draw,thick,->,>=latex] (a) -- (7a);
\path[draw,thick,->,>=latex] (1b) -- (b);
\path[draw,thick,->,>=latex] (2b) -- (b);
\path[draw,thick,->,>=latex] (3b) -- (b);
\path[draw,thick,->,>=latex] (4b) -- (b);
\path[draw,thick,->,>=latex] (5b) -- (b);
\path[draw,thick,->,>=latex] (6b) -- (b);
\path[draw,thick,->,>=latex] (7b) -- (b);
\path[draw=red,thick,->,line width=2pt] (1a) -- (5b);
\path[draw=red,thick,->,line width=2pt] (5a) -- (6b);
\path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
\path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
In this case, the maximum matching consists of four edges
that corresponds to edges
2016-12-28 23:54:51 +01:00
$1 \rightarrow 5$, $3 \rightarrow 4$,
2017-01-10 22:56:44 +01:00
$5 \rightarrow 6$ and $6 \rightarrow 7$ in the original graph.
Thus, a minimum node-disjoint path cover consists of paths
that contain these edges.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
The size of a minimum path cover is $n-c$ where
$n$ is the number of nodes in the graph,
and $c$ is the number of edges in the maximum matching.
For example, in the above graph the size of the
minimum path cover is $7-4=3$.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
\subsubsection{General cover}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
In a general path cover, a node can belong to more than one path
which may decrease the number of paths needed.
In the example graph, the minimum general path cover
consists of two paths as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (2) at (2,0) {2};
\node[draw, circle] (3) at (4,0) {3};
\node[draw, circle] (4) at (6,0) {4};
\node[draw, circle] (5) at (0,-2) {5};
\node[draw, circle] (6) at (2,-2) {6};
\node[draw, circle] (7) at (4,-2) {7};
\path[draw=blue,thick,->,line width=2pt] (1) -- (5);
\path[draw=blue,thick,->,line width=2pt] (5) -- (6);
\path[draw=blue,thick,->,line width=2pt] (6) -- (3);
\path[draw=blue,thick,->,line width=2pt] (3) -- (4);
\path[draw=green,thick,->,line width=2pt] (2) -- (6);
\path[draw=green,thick,->,line width=2pt] (6) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
In this graph, a minimum general path cover contains 2 paths,
while a minimum node-disjoint path cover contains 3 paths.
The difference is that in the general path cover,
node 6 appears in two paths.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
A minimum general path cover can be found
almost like a minimum node-disjoint path cover.
It suffices to extend the matching graph
so that there is an edge $a \rightarrow b$
always when there is a path from node $a$ to node $b$
in the original graph (possibly through several edges).
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
The matching graph for the example case looks as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1a) at (0,6) {1};
\node[draw, circle] (2a) at (0,5) {2};
\node[draw, circle] (3a) at (0,4) {3};
\node[draw, circle] (4a) at (0,3) {4};
\node[draw, circle] (5a) at (0,2) {5};
\node[draw, circle] (6a) at (0,1) {6};
\node[draw, circle] (7a) at (0,0) {7};
\node[draw, circle] (1b) at (4,6) {1};
\node[draw, circle] (2b) at (4,5) {2};
\node[draw, circle] (3b) at (4,4) {3};
\node[draw, circle] (4b) at (4,3) {4};
\node[draw, circle] (5b) at (4,2) {5};
\node[draw, circle] (6b) at (4,1) {6};
\node[draw, circle] (7b) at (4,0) {7};
\node[draw, circle] (a) at (-3,3) {\phantom{0}};
\node[draw, circle] (b) at (7,3) {\phantom{0}};
%\path[draw,thick,->,>=latex] (1a) -- (5b);
\path[draw,thick,->,>=latex] (1a) -- (6b);
\path[draw,thick,->,>=latex] (1a) -- (7b);
\path[draw,thick,->,>=latex] (1a) -- (3b);
\path[draw,thick,->,>=latex] (1a) -- (4b);
\path[draw,thick,->,>=latex] (5a) -- (6b);
\path[draw,thick,->,>=latex] (5a) -- (7b);
%\path[draw,thick,->,>=latex] (5a) -- (3b);
\path[draw,thick,->,>=latex] (5a) -- (4b);
\path[draw,thick,->,>=latex] (6a) -- (7b);
%\path[draw,thick,->,>=latex] (6a) -- (7b);
\path[draw,thick,->,>=latex] (6a) -- (3b);
%\path[draw,thick,->,>=latex] (3a) -- (4b);
%\path[draw,thick,->,>=latex] (2a) -- (6b);
\path[draw,thick,->,>=latex] (2a) -- (7b);
\path[draw,thick,->,>=latex] (2a) -- (3b);
\path[draw,thick,->,>=latex] (2a) -- (4b);
\path[draw,thick,->,>=latex] (a) -- (1a);
\path[draw,thick,->,>=latex] (a) -- (2a);
\path[draw,thick,->,>=latex] (a) -- (3a);
\path[draw,thick,->,>=latex] (a) -- (4a);
\path[draw,thick,->,>=latex] (a) -- (5a);
\path[draw,thick,->,>=latex] (a) -- (6a);
\path[draw,thick,->,>=latex] (a) -- (7a);
\path[draw,thick,->,>=latex] (1b) -- (b);
\path[draw,thick,->,>=latex] (2b) -- (b);
\path[draw,thick,->,>=latex] (3b) -- (b);
\path[draw,thick,->,>=latex] (4b) -- (b);
\path[draw,thick,->,>=latex] (5b) -- (b);
\path[draw,thick,->,>=latex] (6b) -- (b);
\path[draw,thick,->,>=latex] (7b) -- (b);
\path[draw=red,thick,->,line width=2pt] (1a) -- (5b);
\path[draw=red,thick,->,line width=2pt] (5a) -- (3b);
\path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
\path[draw=red,thick,->,line width=2pt] (2a) -- (6b);
\path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (1a) -- (6b);
% \path[draw=red,thick,->,line width=2pt] (1a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (1a) -- (3b);
% \path[draw=red,thick,->,line width=2pt] (1a) -- (4b);
% \path[draw=red,thick,->,line width=2pt] (5a) -- (6b);
% \path[draw=red,thick,->,line width=2pt] (5a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (5a) -- (3b);
% \path[draw=red,thick,->,line width=2pt] (5a) -- (4b);
% \path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (6a) -- (3b);
% \path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
% \path[draw=red,thick,->,line width=2pt] (2a) -- (6b);
% \path[draw=red,thick,->,line width=2pt] (2a) -- (7b);
% \path[draw=red,thick,->,line width=2pt] (2a) -- (3b);
% \path[draw=red,thick,->,line width=2pt] (2a) -- (4b);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
\subsubsection{Dilworth's theorem}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
\index{Dilworth's theorem}
\index{antichain}
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
\key{Dilworth's theorem} states that the size of
a minimum general path cover in a directed, acyclic graph
equals the maximum size of an \key{antichain}, i.e.,
a set of nodes such that there is no path
from any node to another node.
2016-12-28 23:54:51 +01:00
2017-01-10 22:56:44 +01:00
For example, in the example graph, the minimum
general path cover contains two paths,
so the largest antichain contains two nodes.
We can construct such an antichain
by choosing nodes 3 and 7:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (2) at (2,0) {2};
\node[draw, circle, fill=lightgray] (3) at (4,0) {3};
\node[draw, circle] (4) at (6,0) {4};
\node[draw, circle] (5) at (0,-2) {5};
\node[draw, circle] (6) at (2,-2) {6};
\node[draw, circle, fill=lightgray] (7) at (4,-2) {7};
\path[draw,thick,->,>=latex] (1) -- (5);
\path[draw,thick,->,>=latex] (2) -- (6);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (5) -- (6);
\path[draw,thick,->,>=latex] (6) -- (3);
\path[draw,thick,->,>=latex] (6) -- (7);
\end{tikzpicture}
\end{center}
2017-01-10 22:56:44 +01:00
There is no path from node 3 to node 7,
and no path from node 7 to node 3,
so nodes 3 and 7 form an antichain.
On the other hand, if we choose any three
nodes in the graph, there is certainly a
path from one node to another node.