cphb/chapter10.tex

531 lines
15 KiB
TeX
Raw Normal View History

2016-12-28 23:54:51 +01:00
\chapter{Bit manipulation}
2017-02-16 22:31:26 +01:00
All data in computer programs is internally stored as bits,
2017-02-04 21:10:45 +01:00
i.e., as numbers 0 and 1.
2017-05-21 14:37:52 +02:00
This chapter discusses the bit representation
of integers, and shows examples
of how to use bit operations.
2017-01-07 12:34:28 +01:00
It turns out that there are many uses for
2017-05-21 14:37:52 +02:00
bit manipulation in algorithm programming.
2017-01-07 12:34:28 +01:00
\section{Bit representation}
\index{bit representation}
2017-05-21 14:37:52 +02:00
In programming, an $n$ bit integer is internally
stored as a binary number that consists of $n$ bits.
For example, the C++ type \texttt{int} is
a 32-bit type, which means that every \texttt{int}
number consists of 32 bits.
Here is the bit representation of
the \texttt{int} number 43:
2016-12-28 23:54:51 +01:00
\[00000000000000000000000000101011\]
2017-05-21 14:37:52 +02:00
The bits in the representation are indexed from right to left.
To convert a bit representation $b_k \cdots b_2 b_1 b_0$ into a number,
we can use the formula
\[b_k 2^k + \ldots + b_2 2^2 + b_1 2^1 + b_0 2^0.\]
For example,
\[1 \cdot 2^5 + 1 \cdot 2^3 + 1 \cdot 2^1 + 1 \cdot 2^0 = 43.\]
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The bit representation of a number is either
\key{signed} or \key{unsigned}.
2017-02-04 21:10:45 +01:00
Usually a signed representation is used,
which means that both negative and positive
numbers can be represented.
2017-05-21 14:37:52 +02:00
A signed variable of $n$ bits can contain any
2017-03-01 21:03:44 +01:00
integer between $-2^{n-1}$ and $2^{n-1}-1$.
2017-02-04 21:10:45 +01:00
For example, the \texttt{int} type in C++ is
2017-05-21 14:37:52 +02:00
a signed type, so an \texttt{int} variable can contain any
2017-03-01 21:03:44 +01:00
integer between $-2^{31}$ and $2^{31}-1$.
2017-02-04 21:10:45 +01:00
The first bit in a signed representation
is the sign of the number (0 for nonnegative numbers
and 1 for negative numbers), and
2017-02-16 22:31:26 +01:00
the remaining $n-1$ bits contain the magnitude of the number.
2017-02-04 21:10:45 +01:00
\key{Two's complement} is used, which means that the
opposite number of a number is calculated by first
inverting all the bits in the number,
2017-01-07 12:34:28 +01:00
and then increasing the number by one.
2017-05-21 14:37:52 +02:00
For example, the bit representation of
the \texttt{int} number $-43$ is
\[11111111111111111111111111010101.\]
2016-12-28 23:54:51 +01:00
2017-02-28 19:00:15 +01:00
In an unsigned representation, only nonnegative
2017-05-21 14:37:52 +02:00
numbers can be used, but the upper bound for the values is larger.
An unsigned variable of $n$ bits can contain any
2017-02-04 21:10:45 +01:00
integer between $0$ and $2^n-1$.
2017-05-21 14:37:52 +02:00
For example, in C++, an \texttt{unsigned int} variable
2017-02-04 21:10:45 +01:00
can contain any integer between $0$ and $2^{32}-1$.
2017-05-21 14:37:52 +02:00
There is a connection between the
2017-02-04 21:10:45 +01:00
representations:
2017-05-21 14:37:52 +02:00
a signed number $-x$ equals an unsigned number $2^n-x$.
2017-02-04 21:10:45 +01:00
For example, the following code shows that
the signed number $x=-43$ equals the unsigned
number $y=2^{32}-43$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int x = -43;
unsigned int y = x;
cout << x << "\n"; // -43
cout << y << "\n"; // 4294967253
\end{lstlisting}
2017-01-07 12:34:28 +01:00
2017-02-04 21:10:45 +01:00
If a number is larger than the upper bound
of the bit representation, the number will overflow.
In a signed representation,
2017-01-07 12:34:28 +01:00
the next number after $2^{n-1}-1$ is $-2^{n-1}$,
and in an unsigned representation,
the next number after $2^{n-1}$ is $0$.
2017-02-16 22:31:26 +01:00
For example, consider the following code:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int x = 2147483647
cout << x << "\n"; // 2147483647
x++;
cout << x << "\n"; // -2147483648
\end{lstlisting}
2017-02-16 22:31:26 +01:00
Initially, the value of $x$ is $2^{31}-1$.
2017-05-21 14:37:52 +02:00
This is the largest value that can be stored
2017-02-16 22:31:26 +01:00
in an \texttt{int} variable,
so the next number after $2^{31}-1$ is $-2^{31}$.
2017-01-07 12:34:28 +01:00
\section{Bit operations}
2016-12-28 23:54:51 +01:00
\newcommand\XOR{\mathbin{\char`\^}}
2017-01-07 12:34:28 +01:00
\subsubsection{And operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\index{and operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The \key{and} operation $x$ \& $y$ produces a number
2017-02-04 21:10:45 +01:00
that has one bits in positions where both
$x$ and $y$ have one bits.
For example, $22$ \& $26$ = 18, because
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tabular}{rrr}
& 10110 & (22)\\
\& & 11010 & (26) \\
\hline
= & 10010 & (18) \\
\end{tabular}
\end{center}
2017-01-07 12:34:28 +01:00
Using the and operation, we can check if a number
$x$ is even because
$x$ \& $1$ = 0 if $x$ is even, and
$x$ \& $1$ = 1 if $x$ is odd.
2017-02-04 21:10:45 +01:00
More generally, $x$ is divisible by $2^k$
exactly when $x$ \& $(2^k-1)$ = 0.
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\subsubsection{Or operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\index{or operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The \key{or} operation $x$ | $y$ produces a number
2017-02-04 21:10:45 +01:00
that has one bits in positions where at least one
of $x$ and $y$ have one bits.
For example, $22$ | $26$ = 30, because
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tabular}{rrr}
& 10110 & (22)\\
| & 11010 & (26) \\
\hline
= & 11110 & (30) \\
\end{tabular}
\end{center}
2017-01-07 12:34:28 +01:00
\subsubsection{Xor operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\index{xor operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The \key{xor} operation $x$ $\XOR$ $y$ produces a number
2017-02-04 21:10:45 +01:00
that has one bits in positions where exactly one
of $x$ and $y$ have one bits.
For example, $22$ $\XOR$ $26$ = 12, because
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tabular}{rrr}
& 10110 & (22)\\
$\XOR$ & 11010 & (26) \\
\hline
= & 01100 & (12) \\
\end{tabular}
\end{center}
2017-01-07 12:34:28 +01:00
\subsubsection{Not operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\index{not operation}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The \key{not} operation \textasciitilde$x$
produces a number where all the bits of $x$
2017-02-04 21:10:45 +01:00
have been inverted.
2017-01-07 12:34:28 +01:00
The formula \textasciitilde$x = -x-1$ holds,
for example, \textasciitilde$29 = -30$.
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
The result of the not operation at the bit level
2017-02-04 21:10:45 +01:00
depends on the length of the bit representation,
2017-05-21 14:37:52 +02:00
because the operation inverts all bits.
2017-01-07 12:34:28 +01:00
For example, if the numbers are 32-bit
\texttt{int} numbers, the result is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tabular}{rrrr}
$x$ & = & 29 & 00000000000000000000000000011101 \\
\textasciitilde$x$ & = & $-30$ & 11111111111111111111111111100010 \\
\end{tabular}
\end{center}
2017-01-07 12:34:28 +01:00
\subsubsection{Bit shifts}
2016-12-28 23:54:51 +01:00
2017-01-07 12:34:28 +01:00
\index{bit shift}
2016-12-28 23:54:51 +01:00
2017-02-04 21:10:45 +01:00
The left bit shift $x < < k$ appends $k$
2017-02-16 22:31:26 +01:00
zero bits to the number,
2017-01-07 12:34:28 +01:00
and the right bit shift $x > > k$
2017-02-04 21:10:45 +01:00
removes the $k$ last bits from the number.
For example, $14 < < 2 = 56$,
2017-05-21 14:37:52 +02:00
because $14$ and $56$ correspond to 1110 and 111000.
2017-02-11 20:39:03 +01:00
Similarly, $49 > > 3 = 6$,
2017-05-21 14:37:52 +02:00
because $49$ and $6$ correspond to 110001 and 110.
2017-02-04 21:10:45 +01:00
Note that $x < < k$
corresponds to multiplying $x$ by $2^k$,
and $x > > k$
2017-01-07 12:34:28 +01:00
corresponds to dividing $x$ by $2^k$
2017-02-04 21:10:45 +01:00
rounded down to an integer.
2016-12-28 23:54:51 +01:00
2017-02-04 21:10:45 +01:00
\subsubsection{Applications}
2016-12-28 23:54:51 +01:00
2017-02-04 21:10:45 +01:00
A number of the form $1 < < k$ has a one bit
2017-02-16 22:31:26 +01:00
in position $k$ and all other bits are zero,
2017-02-04 21:10:45 +01:00
so we can use such numbers to access single bits of numbers.
2017-05-21 14:37:52 +02:00
In particular, the $k$th bit of a number is one
2017-02-04 21:10:45 +01:00
exactly when $x$ \& $(1 < < k)$ is not zero.
The following code prints the bit representation
of an \texttt{int} number $x$:
2016-12-28 23:54:51 +01:00
2017-02-04 21:10:45 +01:00
\begin{lstlisting}
for (int i = 31; i >= 0; i--) {
if (x&(1<<i)) cout << "1";
else cout << "0";
}
\end{lstlisting}
It is also possible to modify single bits
2017-05-21 14:37:52 +02:00
of numbers using similar ideas.
For example, the formula $x$ | $(1 < < k)$
2017-01-07 12:34:28 +01:00
sets the $k$th bit of $x$ to one,
2017-05-21 14:37:52 +02:00
the formula
2016-12-28 23:54:51 +01:00
$x$ \& \textasciitilde $(1 < < k)$
2017-01-07 12:34:28 +01:00
sets the $k$th bit of $x$ to zero,
2017-05-21 14:37:52 +02:00
and the formula
2017-01-07 12:34:28 +01:00
$x$ $\XOR$ $(1 < < k)$
2017-02-04 21:10:45 +01:00
inverts the $k$th bit of $x$.
2017-01-07 12:34:28 +01:00
The formula $x$ \& $(x-1)$ sets the last
one bit of $x$ to zero,
and the formula $x$ \& $-x$ sets all the
one bits to zero, except for the last one bit.
2017-02-04 21:10:45 +01:00
The formula $x$ | $(x-1)$
inverts all the bits after the last one bit.
2017-01-07 12:34:28 +01:00
Also note that a positive number $x$ is
2017-05-21 14:37:52 +02:00
a power of two exactly when $x$ \& $(x-1) = 0$.
2017-01-07 12:34:28 +01:00
\subsubsection*{Additional functions}
2017-02-04 21:10:45 +01:00
The g++ compiler provides the following
functions for counting bits:
2016-12-28 23:54:51 +01:00
\begin{itemize}
\item
$\texttt{\_\_builtin\_clz}(x)$:
2017-01-07 12:34:28 +01:00
the number of zeros at the beginning of the number
2016-12-28 23:54:51 +01:00
\item
$\texttt{\_\_builtin\_ctz}(x)$:
2017-01-07 12:34:28 +01:00
the number of zeros at the end of the number
2016-12-28 23:54:51 +01:00
\item
$\texttt{\_\_builtin\_popcount}(x)$:
2017-01-07 12:34:28 +01:00
the number of ones in the number
2016-12-28 23:54:51 +01:00
\item
$\texttt{\_\_builtin\_parity}(x)$:
2017-01-07 12:34:28 +01:00
the parity (even or odd) of the number of ones
2016-12-28 23:54:51 +01:00
\end{itemize}
\begin{samepage}
2017-02-04 21:10:45 +01:00
The functions can be used as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int x = 5328; // 00000000000000000001010011010000
cout << __builtin_clz(x) << "\n"; // 19
cout << __builtin_ctz(x) << "\n"; // 4
cout << __builtin_popcount(x) << "\n"; // 5
cout << __builtin_parity(x) << "\n"; // 1
\end{lstlisting}
\end{samepage}
2017-05-21 14:37:52 +02:00
While the above functions only support \texttt{int} numbers,
there are also \texttt{long long} versions of
the functions available with the suffix \texttt{ll}.
2017-01-07 12:34:28 +01:00
2017-02-04 21:10:45 +01:00
\section{Representing sets}
2017-01-07 12:34:28 +01:00
2017-05-21 14:37:52 +02:00
Every subset of a set
$\{0,1,2,\ldots,n-1\}$
can be represented as an $n$ bit integer
whose one bits indicate which
elements belong to the subset.
This is an efficient way to represent sets,
because every element requires only one bit of memory,
and set operations can be implemented as bit operations.
For example, since \texttt{int} is a 32-bit type,
an \texttt{int} number can represent any subset
of the set $\{0,1,2,\ldots,31\}$.
The bit representation of the set $\{1,3,4,8\}$ is
\[00000000000000000000000100011010,\]
which corresponds to the number $2^8+2^4+2^3+2^1=282$.
2016-12-28 23:54:51 +01:00
2017-02-16 22:31:26 +01:00
\subsubsection{Set implementation}
2016-12-28 23:54:51 +01:00
2017-05-21 14:37:52 +02:00
The following code declares an \texttt{int}
variable $x$ that can contain
a subset of $\{0,1,2,\ldots,31\}$.
After this, the code adds the elements 1, 3, 4 and 8
to the set and prints the size of the set.
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int x = 0;
x |= (1<<1);
x |= (1<<3);
x |= (1<<4);
x |= (1<<8);
2017-05-21 14:37:52 +02:00
cout << __builtin_popcount(x) << "\n"; // 4
\end{lstlisting}
Then, the following code prints all
elements that belong to the set:
\begin{lstlisting}
2016-12-28 23:54:51 +01:00
for (int i = 0; i < 32; i++) {
if (x&(1<<i)) cout << i << " ";
}
2017-05-21 14:37:52 +02:00
// output: 1 3 4 8
2017-02-16 22:31:26 +01:00
\end{lstlisting}
\subsubsection{Set operations}
2017-05-21 14:37:52 +02:00
Set operations can be implemented as follows as bit operations:
2016-12-28 23:54:51 +01:00
2017-05-21 14:37:52 +02:00
\begin{center}
\begin{tabular}{lll}
& set syntax & bit syntax \\
\hline
intersection & $a \cap b$ & $a$ \& $b$ \\
union & $a \cup b$ & $a$ | $b$ \\
complement & $\bar a$ & \textasciitilde$a$ \\
difference & $a \setminus b$ & $a$ \& (\textasciitilde$b$) \\
\end{tabular}
\end{center}
For example, the following code first constructs
the sets $x=\{1,3,4,8\}$ and $y=\{3,6,8,9\}$,
and then calculates the set $z = x \cup y = \{1,3,4,6,8,9\}$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int x = (1<<1)+(1<<3)+(1<<4)+(1<<8);
int y = (1<<3)+(1<<6)+(1<<8)+(1<<9);
int z = x|y;
2017-05-21 14:37:52 +02:00
cout << __builtin_popcount(z) << "\n"; // 6
2017-02-16 22:31:26 +01:00
\end{lstlisting}
2017-01-07 12:51:53 +01:00
\subsubsection{Iterating through subsets}
2016-12-28 23:54:51 +01:00
2017-02-04 21:47:12 +01:00
The following code goes through
2017-01-07 12:51:53 +01:00
the subsets of $\{0,1,\ldots,n-1\}$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int b = 0; b < (1<<n); b++) {
2017-01-07 12:51:53 +01:00
// process subset b
2016-12-28 23:54:51 +01:00
}
\end{lstlisting}
2017-01-07 12:51:53 +01:00
The following code goes through
2017-02-04 21:47:12 +01:00
the subsets with exactly $k$ elements:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int b = 0; b < (1<<n); b++) {
if (__builtin_popcount(b) == k) {
2017-01-07 12:51:53 +01:00
// process subset b
2016-12-28 23:54:51 +01:00
}
}
\end{lstlisting}
2017-01-07 12:51:53 +01:00
The following code goes through the subsets
of a set $x$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
int b = 0;
do {
2017-01-07 12:51:53 +01:00
// process subset b
2016-12-28 23:54:51 +01:00
} while (b=(b-x)&x);
\end{lstlisting}
2017-01-07 14:35:53 +01:00
\section{Dynamic programming}
\subsubsection{From permutations to subsets}
Using dynamic programming, it is often possible
2017-02-16 22:31:26 +01:00
to change an iteration over permutations into
an iteration over subsets, so that
2017-02-04 21:47:12 +01:00
the dynamic programming state
2017-01-07 14:35:53 +01:00
contains a subset of a set and possibly
2017-02-25 16:57:10 +01:00
some additional information\footnote{This technique was introduced in 1962
by M. Held and R. M. Karp \cite{hel62}.}.
2017-01-07 14:35:53 +01:00
2017-02-04 21:47:12 +01:00
The benefit in this is that
2017-01-07 14:35:53 +01:00
$n!$, the number of permutations of an $n$ element set,
2017-02-16 22:31:26 +01:00
is much larger than $2^n$, the number of subsets
of the same set.
2017-01-07 14:35:53 +01:00
For example, if $n=20$, then
2017-02-16 22:31:26 +01:00
$n! \approx 2.4 \cdot 10^{18}$ and $2^n \approx 10^6$.
2017-02-04 21:47:12 +01:00
Hence, for certain values of $n$,
we can efficiently go through subsets but not through permutations.
2017-01-07 14:35:53 +01:00
2017-02-04 21:47:12 +01:00
As an example, consider the problem of
calculating the number of
permutations of a set $\{0,1,\ldots,n-1\}$,
where the difference between any two consecutive
2017-01-07 14:35:53 +01:00
elements is larger than one.
2017-02-04 21:47:12 +01:00
For example, when $n=4$, there are two such permutations:
$(1,3,0,2)$ and $(2,0,3,1)$.
2016-12-28 23:54:51 +01:00
2017-02-04 21:47:12 +01:00
Let $f(x,k)$ denote the number of valid permutations
2017-02-16 22:31:26 +01:00
of a subset $x$ where the last element is $k$ and
the difference between any two consecutive
2017-01-07 14:35:53 +01:00
elements is larger than one.
2017-02-04 21:47:12 +01:00
For example, $f(\{0,1,3\},1)=1$,
2017-01-07 14:35:53 +01:00
because there is a permutation $(0,3,1)$,
2017-02-04 21:47:12 +01:00
and $f(\{0,1,3\},3)=0$, because 0 and 1
cannot be next to each other.
2016-12-28 23:54:51 +01:00
2017-02-16 22:31:26 +01:00
Using $f$, the answer to the problem equals
\[ \sum_{i=0}^{n-1} f(\{0,1,\ldots,n-1\},i), \]
because the permutation has to contain all
elements $\{0,1,\ldots,n-1\}$ and the last
element can be any element.
2016-12-28 23:54:51 +01:00
2017-02-16 22:31:26 +01:00
The dynamic programming values can be stored as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-02-16 23:47:44 +01:00
int d[1<<n][n];
2016-12-28 23:54:51 +01:00
\end{lstlisting}
2017-01-07 14:35:53 +01:00
First, $f(\{k\},k)=1$ for all values of $k$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int i = 0; i < n; i++) d[1<<i][i] = 1;
\end{lstlisting}
2017-02-04 21:47:12 +01:00
Then, the other values can be calculated
2017-01-07 14:35:53 +01:00
as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int b = 0; b < (1<<n); b++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (abs(i-j) > 1 && (b&(1<<i)) && (b&(1<<j))) {
d[b][i] += d[b^(1<<i)][j];
}
}
}
}
\end{lstlisting}
2017-02-16 22:31:26 +01:00
In the above code,
the variable $b$ goes through all subsets and each
permutation is of the form $(\ldots,j,i)$,
2017-02-04 21:47:12 +01:00
where the difference between $i$ and $j$ is
larger than one and $i$ and $j$ belong to $b$.
2016-12-28 23:54:51 +01:00
2017-01-07 14:35:53 +01:00
Finally, the number of solutions can be
2017-02-04 21:47:12 +01:00
calculated as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-02-16 23:47:44 +01:00
int s = 0;
2016-12-28 23:54:51 +01:00
for (int i = 0; i < n; i++) {
s += d[(1<<n)-1][i];
}
\end{lstlisting}
2017-02-16 23:47:44 +01:00
\subsubsection{Counting subsets}
Our last problem in this chapter is as follows:
2017-02-16 23:50:04 +01:00
We are given a collection $C$ that consists of $m$ sets,
2017-02-16 23:47:44 +01:00
and our task is to determine for each set
2017-02-16 23:50:04 +01:00
the number of sets in $C$ that are its subsets.
2017-02-16 23:47:44 +01:00
For example, consider the following collection:
\[C = \{\{0\}, \{0,2\}, \{1,4\}, \{0,1,4\}, \{1,4,5\}\}\]
For any set $x$ in $C$,
let $f(x)$ denote the number of sets (including $x$) in $C$
that are subsets of $x$.
For example, $f(\{0,1,4\})=3$, because the
sets $\{0\}$, $\{1,4\}$ and $\{0,1,4\}$ are
subsets of $\{0,1,4\}$.
Using this notation, our task is to calculate the value of $f(x)$
for every set $x$ in the collection.
We will assume that each set is
a subset of $\{0,1,\ldots,n-1\}$.
Thus, the collection can contain at most
$2^n$ sets.
A straightforward way to solve the problem
is to go through all pairs of sets in the collection.
However, a more efficient solution is possible
using dynamic programming.
Let $c(x,k)$ denote the number of sets in
2017-02-16 23:50:04 +01:00
$C$ that equal a set $x$
2017-02-16 23:47:44 +01:00
if we are allowed to remove any subset of
$\{0,1,\ldots,k\}$ from $x$.
For example, in the above collection,
$c(\{0,1,4\},1)=2$,
where the corresponding sets are
$\{1,4\}$ and $\{0,1,4\}$.
It turns out that we can calculate all
values of $c(x,k)$ in $O(2^n n)$ time.
This solves our problem, because
\[f(x)=c(x,n-1).\]
2016-12-28 23:54:51 +01:00
2017-01-07 14:35:53 +01:00
The base cases for the function are:
2016-12-28 23:54:51 +01:00
\begin{equation*}
2017-02-16 23:47:44 +01:00
c(x,-1) = \begin{cases}
2017-02-16 23:55:36 +01:00
0 & \textrm{if $x \notin C$}\\
1 & \textrm{if $x \in C$}\\
2016-12-28 23:54:51 +01:00
\end{cases}
\end{equation*}
2017-01-07 14:35:53 +01:00
For larger values of $k$, the following recursion holds:
2016-12-28 23:54:51 +01:00
\begin{equation*}
2017-02-16 23:47:44 +01:00
c(x,k) = \begin{cases}
c(x,k-1) & \textrm{if $k \notin x$}\\
c(x,k-1)+c(x \setminus \{k\},k-1) & \textrm{if $k \in x$}\\
2016-12-28 23:54:51 +01:00
\end{cases}
\end{equation*}
2017-02-16 23:47:44 +01:00
We can conveniently implement the algorithm by representing
the sets using bits.
Assume that there is an array
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-02-16 23:47:44 +01:00
int d[1<<n];
2016-12-28 23:54:51 +01:00
\end{lstlisting}
2017-02-16 23:47:44 +01:00
that is initialized so that $d[x]=1$ if $x$ belongs to $C$
and otherwise $d[x]=0$.
We can now implement the algorithm as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int k = 0; k < n; k++) {
2017-02-16 23:47:44 +01:00
for (int b = 0; b < (1<<n); b++) {
if (b&(1<<k)) d[b] += d[b^(1<<k)];
2016-12-28 23:54:51 +01:00
}
}
\end{lstlisting}
2017-02-16 23:47:44 +01:00
The above code is based on the recursive definition
2017-02-16 23:53:57 +01:00
of $c$. As a special trick, the code only uses
2017-02-16 23:47:44 +01:00
the array $d$ to calculate all values of the function.
Finally, for each set $x$ in $C$, $f(x)=d[x]$.
2016-12-28 23:54:51 +01:00