cphb/luku03.tex

959 lines
26 KiB
TeX
Raw Normal View History

2016-12-28 23:54:51 +01:00
\chapter{Sorting}
2016-12-29 23:17:22 +01:00
\index{sorting}
\key{Sorting}
is a fundamental algorithm design problem.
In addition,
many efficient algorithms
use sorting as a subroutine,
because it is often easier to process
data if the elements are in a sorted order.
For example, the question ''does the array contain
two equal elements?'' is easy to solve using sorting.
If the array contains two equal elements,
they will be next to each other after sorting,
so it is easy to find them.
Also the question ''what is the most frequent element
in the array?'' can be solved similarly.
There are many algorithms for sorting, that are
also good examples of algorithm design techniques.
The efficient general sorting algorithms
work in $O(n \log n)$ time,
and many algorithms that use sorting
as a subroutine also
have this time complexity.
\section{Sorting theory}
The basic problem in sorting is as follows:
2016-12-28 23:54:51 +01:00
\begin{framed}
\noindent
2016-12-29 23:17:22 +01:00
Given an array that contains $n$ elements,
your task is to sort the elements
in increasing order.
2016-12-28 23:54:51 +01:00
\end{framed}
\noindent
2016-12-29 23:17:22 +01:00
For example, the array
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$8$};
\node at (3.5,0.5) {$2$};
\node at (4.5,0.5) {$9$};
\node at (5.5,0.5) {$2$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$6$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
will be as follows after sorting:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$5$};
\node at (5.5,0.5) {$6$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
\subsubsection{$O(n^2)$ algorithms}
\index{bubble sort}
Simple algorithms for sorting an array
work in $O(n^2)$ time.
Such algorithms are short and usually
consist of two nested loops.
A famous $O(n^2)$ time algorithm for sorting
is \key{bubble sort} where the elements
''bubble'' forward in the array according to their values.
Bubble sort consists of $n-1$ rounds.
On each round, the algorithm iterates through
the elements in the array.
Whenever two successive elements are found
that are not in correct order,
the algorithm swaps them.
The algorithm can be implemented as follows
for array
2016-12-28 23:54:51 +01:00
$\texttt{t}[1],\texttt{t}[2],\ldots,\texttt{t}[n]$:
\begin{lstlisting}
for (int i = 1; i <= n-1; i++) {
for (int j = 1; j <= n-i; j++) {
if (t[j] > t[j+1]) swap(t[j],t[j+1]);
}
}
\end{lstlisting}
2016-12-29 23:17:22 +01:00
After the first round of the algorithm,
the largest element is in the correct place,
after the second round the second largest
element is in the correct place, etc.
Thus, after $n-1$ rounds, all elements
will be sorted.
2016-12-28 23:54:51 +01:00
2016-12-29 23:17:22 +01:00
For example, in the array
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$8$};
\node at (3.5,0.5) {$2$};
\node at (4.5,0.5) {$9$};
\node at (5.5,0.5) {$2$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$6$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
\noindent
2016-12-29 23:17:22 +01:00
the first round of bubble sort swaps elements
as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$8$};
\node at (4.5,0.5) {$9$};
\node at (5.5,0.5) {$2$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$6$};
\draw[thick,<->] (3.5,-0.25) .. controls (3.25,-1.00) and (2.75,-1.00) .. (2.5,-0.25);
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$8$};
\node at (4.5,0.5) {$2$};
\node at (5.5,0.5) {$9$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$6$};
\draw[thick,<->] (5.5,-0.25) .. controls (5.25,-1.00) and (4.75,-1.00) .. (4.5,-0.25);
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$8$};
\node at (4.5,0.5) {$2$};
\node at (5.5,0.5) {$5$};
\node at (6.5,0.5) {$9$};
\node at (7.5,0.5) {$6$};
\draw[thick,<->] (6.5,-0.25) .. controls (6.25,-1.00) and (5.75,-1.00) .. (5.5,-0.25);
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$8$};
\node at (4.5,0.5) {$2$};
\node at (5.5,0.5) {$5$};
\node at (6.5,0.5) {$6$};
\node at (7.5,0.5) {$9$};
\draw[thick,<->] (7.5,-0.25) .. controls (7.25,-1.00) and (6.75,-1.00) .. (6.5,-0.25);
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
\subsubsection{Inversions}
\index{inversion}
Bubble sort is an example of a sorting
algorithm that always swaps successive
elements in the array.
It turns out that the time complexity
of this kind of an algorithm is \emph{always}
at least $O(n^2)$ because in the worst case,
$O(n^2)$ swaps are required for sorting the array.
A useful concept when analyzing sorting
algorithms is an \key{inversion}.
It is a pair of elements
$(\texttt{t}[a],\texttt{t}[b])$
in the array such that
$a<b$ and $\texttt{t}[a]>\texttt{t}[b]$,
i.e., they are in wrong order.
For example, in the array
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$6$};
\node at (4.5,0.5) {$3$};
\node at (5.5,0.5) {$5$};
\node at (6.5,0.5) {$9$};
\node at (7.5,0.5) {$8$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
the inversions are $(6,3)$, $(6,5)$ and $(9,8)$.
The number of inversions indicates
how sorted the array is.
An array is completely sorted when
there are no inversions.
On the other hand, if the array elements
are in reverse order,
the number of inversions is maximum:
\[1+2+\cdots+(n-1)=\frac{n(n-1)}{2} = O(n^2)\]
Swapping successive elements that are
in wrong order removes exactly one inversion
from the array.
Thus, if a sorting algorithm can only
swap successive elements, each swap removes
at most one inversion and the time complexity
of the algorithm is at least $O(n^2)$.
\subsubsection{$O(n \log n)$ algorithms}
\index{merge sort}
It is possible to sort an array efficiently
in $O(n \log n)$ time using an algorithm
that is not limited to swapping successive elements.
One such algorithm is \key{mergesort}
that sorts an array recursively by dividing
it into smaller subarrays.
Mergesort sorts the subarray $[a,b]$ as follows:
2016-12-28 23:54:51 +01:00
\begin{enumerate}
2016-12-29 23:17:22 +01:00
\item If $a=b$, don't do anything because the subarray is already sorted.
\item Calculate the index of the middle element: $k=\lfloor (a+b)/2 \rfloor$.
\item Recursively sort the subarray $[a,k]$.
\item Recursively sort the subarray $[k+1,b]$.
\item \emph{Merge} the sorted subarrays $[a,k]$ and $[k+1,b]$
into a sorted subarray $[a,b]$.
2016-12-28 23:54:51 +01:00
\end{enumerate}
2016-12-29 23:17:22 +01:00
Mergesort is an efficient algorithm because it
halves the size of the subarray at each step.
The recursion consists of $O(\log n)$ levels,
and processing each level takes $O(n)$ time.
Merging the subarrays $[a,k]$ and $[k+1,b]$
is possible in linear time because they are already sorted.
2016-12-28 23:54:51 +01:00
2016-12-29 23:17:22 +01:00
For example, consider sorting the following array:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$2$};
\node at (4.5,0.5) {$8$};
\node at (5.5,0.5) {$2$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
The array will be divided into two subarrays
as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,1);
\draw (5,0) grid (9,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$2$};
\node at (5.5,0.5) {$8$};
\node at (6.5,0.5) {$2$};
\node at (7.5,0.5) {$5$};
\node at (8.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (5.5,1.4) {$5$};
\node at (6.5,1.4) {$6$};
\node at (7.5,1.4) {$7$};
\node at (8.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
Then, the subarrays will be sorted recursively
as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,1);
\draw (5,0) grid (9,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$3$};
\node at (3.5,0.5) {$6$};
\node at (5.5,0.5) {$2$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$8$};
\node at (8.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (5.5,1.4) {$5$};
\node at (6.5,1.4) {$6$};
\node at (7.5,1.4) {$7$};
\node at (8.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
Finally, the algorithm merges the sorted
subarrays and creates the final sorted array:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$3$};
\node at (4.5,0.5) {$5$};
\node at (5.5,0.5) {$6$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
\subsubsection{Sorting lower bound}
2016-12-28 23:54:51 +01:00
2016-12-29 23:17:22 +01:00
Is it possible to sort an array faster
than in $O(n \log n)$ time?
It turns out that this is \emph{not} possible
when we restrict ourselves to sorting algorithms
that are based on comparing array elements.
2016-12-28 23:54:51 +01:00
2016-12-29 23:17:22 +01:00
The lower bound for the time complexity
can be proved by examining the sorting
as a process where each comparison of two elements
gives more information about the contents of the array.
The process creates the following tree:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) rectangle (3,1);
\node at (1.5,0.5) {$x < y?$};
\draw[thick,->] (1.5,0) -- (-2.5,-1.5);
\draw[thick,->] (1.5,0) -- (5.5,-1.5);
\draw (-4,-2.5) rectangle (-1,-1.5);
\draw (4,-2.5) rectangle (7,-1.5);
\node at (-2.5,-2) {$x < y?$};
\node at (5.5,-2) {$x < y?$};
\draw[thick,->] (-2.5,-2.5) -- (-4.5,-4);
\draw[thick,->] (-2.5,-2.5) -- (-0.5,-4);
\draw[thick,->] (5.5,-2.5) -- (3.5,-4);
\draw[thick,->] (5.5,-2.5) -- (7.5,-4);
\draw (-6,-5) rectangle (-3,-4);
\draw (-2,-5) rectangle (1,-4);
\draw (2,-5) rectangle (5,-4);
\draw (6,-5) rectangle (9,-4);
\node at (-4.5,-4.5) {$x < y?$};
\node at (-0.5,-4.5) {$x < y?$};
\node at (3.5,-4.5) {$x < y?$};
\node at (7.5,-4.5) {$x < y?$};
\draw[thick,->] (-4.5,-5) -- (-5.5,-6);
\draw[thick,->] (-4.5,-5) -- (-3.5,-6);
\draw[thick,->] (-0.5,-5) -- (0.5,-6);
\draw[thick,->] (-0.5,-5) -- (-1.5,-6);
\draw[thick,->] (3.5,-5) -- (2.5,-6);
\draw[thick,->] (3.5,-5) -- (4.5,-6);
\draw[thick,->] (7.5,-5) -- (6.5,-6);
\draw[thick,->] (7.5,-5) -- (8.5,-6);
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
Here ''$x<y?$'' means that some elements
$x$ and $y$ are compared.
If $x<y$, the process continues to the left,
and otherwise to the right.
The results of the process are the possible
ways to order the array, a total of $n!$ ways.
For this reason, the height of the tree
must be at least
2016-12-28 23:54:51 +01:00
\[ \log_2(n!) = \log_2(1)+\log_2(2)+\cdots+\log_2(n).\]
2016-12-29 23:17:22 +01:00
We get an lower bound for this sum
by choosing last $n/2$ elements and
changing the value of each element to $\log_2(n/2)$.
This yields an estimate
2016-12-28 23:54:51 +01:00
\[ \log_2(n!) \ge (n/2) \cdot \log_2(n/2),\]
2016-12-29 23:17:22 +01:00
so the height of the tree and the minimum
possible number of steps in an sorting
algorithm in the worst case
is at least $n \log n$.
\subsubsection{Counting sort}
\index{counting sort}
The lower bound $n \log n$ doesn't apply to
algorithms that do not compare array elements
but use some other information.
An example of such an algorithm is
\key{counting sort} that sorts an array in
$O(n)$ time assuming that every element in the array
is an integer between $0 \ldots c$ where $c$
is a small constant.
The algorithm creates a \emph{bookkeeping} array
whose indices are elements in the original array.
The algorithm iterates through the original array
and calculates how many times each element
appears in the array.
For example, the array
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$3$};
\node at (2.5,0.5) {$6$};
\node at (3.5,0.5) {$9$};
\node at (4.5,0.5) {$9$};
\node at (5.5,0.5) {$3$};
\node at (6.5,0.5) {$5$};
\node at (7.5,0.5) {$9$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
produces the following bookkeeping array:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (9,1);
\node at (0.5,0.5) {$1$};
\node at (1.5,0.5) {$0$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$0$};
\node at (4.5,0.5) {$1$};
\node at (5.5,0.5) {$1$};
\node at (6.5,0.5) {$0$};
\node at (7.5,0.5) {$0$};
\node at (8.5,0.5) {$3$};
\footnotesize
\node at (0.5,1.5) {$1$};
\node at (1.5,1.5) {$2$};
\node at (2.5,1.5) {$3$};
\node at (3.5,1.5) {$4$};
\node at (4.5,1.5) {$5$};
\node at (5.5,1.5) {$6$};
\node at (6.5,1.5) {$7$};
\node at (7.5,1.5) {$8$};
\node at (8.5,1.5) {$9$};
\end{tikzpicture}
\end{center}
2016-12-29 23:17:22 +01:00
For example, the value of element 3
in the bookkeeping array is 2,
because the element 3 appears two times
in the original array (indices 2 and 6).
The construction of the bookkeeping array
takes $O(n)$ time. After this, the sorted array
can be created in $O(n)$ time because
the amount of each element can be retrieved
from the bookkeeping array.
Thus, the total time complexity of counting
sort is $O(n)$.
Counting sort is a very efficient algorithm
but it can only be used when the constant $c$
is so small that the array elements can
be used as indices in the bookkeeping array.
2016-12-28 23:54:51 +01:00
2016-12-30 00:15:51 +01:00
\section{Sorting in C++}
2016-12-28 23:54:51 +01:00
\index{sort@\texttt{sort}}
2016-12-30 00:15:51 +01:00
It is almost never a good idea to use
an own implementation of a sorting algorithm
in a contest, because there are good
implementations available in programming languages.
For example, the C++ standard library contains
the function \texttt{sort} that can be easily used for
sorting arrays and other data structures.
There are many benefits in using a library function.
First, it saves time because there is no need to
implement the function.
In addition, the library implementation is
certainly correct and efficient: it is not probable
that a home-made sorting function would be better.
In this section we will see how to use the
C++ \texttt{sort} function.
The following code sorts the numbers
in vector \texttt{t} in increasing order:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
vector<int> v = {4,2,5,3,5,8,3};
sort(v.begin(),v.end());
\end{lstlisting}
2016-12-30 00:15:51 +01:00
After the sorting, the contents of the
vector will be
$[2,3,3,4,5,5,8]$.
The default sorting order in increasing,
but a reverse order is possible as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
sort(v.rbegin(),v.rend());
\end{lstlisting}
2016-12-30 00:15:51 +01:00
A regular array can be sorted as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2016-12-30 00:15:51 +01:00
int n = 7; // array size
2016-12-28 23:54:51 +01:00
int t[] = {4,2,5,3,5,8,3};
sort(t,t+n);
\end{lstlisting}
2016-12-30 00:15:51 +01:00
The following code sorts the string \texttt{s}:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2016-12-30 00:15:51 +01:00
string s = "monkey";
2016-12-28 23:54:51 +01:00
sort(s.begin(), s.end());
\end{lstlisting}
2016-12-30 00:15:51 +01:00
Sorting a string means that the characters
in the string are sorted.
For example, the string ''monkey'' becomes ''ekmnoy''.
\subsubsection{Comparison operator}
\index{comparison operator}
The function \texttt{sort} requires that
a \key{comparison operator} is defined for the data type
of the elements to be sorted.
During the sorting, this operator will be used
whenever it is needed to find out the order of two elements.
Most C++ data types have a built-in comparison operator
and elements of those types can be sorted automatically.
For example, numbers are sorted according to their values
and strings are sorted according to alphabetical order.
2016-12-28 23:54:51 +01:00
\index{pair@\texttt{pair}}
2016-12-30 00:15:51 +01:00
Pairs (\texttt{pair}) are sorted primarily by the first
element (\texttt{first}).
However, if the first elements of two pairs are equal,
they are sorted by the second element (\texttt{second}):
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
vector<pair<int,int>> v;
v.push_back({1,5});
v.push_back({2,3});
v.push_back({1,2});
sort(v.begin(), v.end());
\end{lstlisting}
2016-12-30 00:15:51 +01:00
After this, the order of the pairs is
$(1,2)$, $(1,5)$ and $(2,3)$.
2016-12-28 23:54:51 +01:00
\index{tuple@\texttt{tuple}}
2016-12-30 00:15:51 +01:00
Correspondingly, tuples (\texttt{tuple})
are sorted primarily by the first element,
secondarily by the second element, etc.:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
vector<tuple<int,int,int>> v;
v.push_back(make_tuple(2,1,4));
v.push_back(make_tuple(1,5,3));
v.push_back(make_tuple(2,1,3));
sort(v.begin(), v.end());
\end{lstlisting}
2016-12-30 00:15:51 +01:00
After this, the order of the tuples is
$(1,5,3)$, $(2,1,3)$ and $(2,1,4)$.
\subsubsection{User-defined structs}
User-defined structs do not have a comparison
operator automatically.
The operator should be defined inside
the struct as a function
\texttt{operator<}
whose parameter is another element of the same type.
The operator should return \texttt{true}
if the element is smaller than the parameter,
and \texttt{false} otherwise.
For example, the following struct \texttt{P}
contains the x and y coordinate of a point.
The comparison operator is defined so that
the points are sorted primarily by the x coordinate
and secondarily by the y coordinate.
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
struct P {
int x, y;
bool operator<(const P &p) {
if (x != p.x) return x < p.x;
else return y < p.y;
}
};
\end{lstlisting}
2016-12-30 00:15:51 +01:00
\subsubsection{Comparison function}
2016-12-28 23:54:51 +01:00
2016-12-30 00:15:51 +01:00
\index{comparison function}
2016-12-28 23:54:51 +01:00
2016-12-30 00:15:51 +01:00
It is also possible to give an external
\key{comparison function} to the \texttt{sort} function
as a callback function.
For example, the following comparison function
sorts strings primarily by length and secondarily
by alphabetical order:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
bool cmp(string a, string b) {
if (a.size() != b.size()) return a.size() < b.size();
return a < b;
}
\end{lstlisting}
2016-12-30 00:15:51 +01:00
Now a vector of strings can be sorted as follows:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
sort(v.begin(), v.end(), cmp);
\end{lstlisting}
2016-12-30 00:15:51 +01:00
\section{Binary search}
2016-12-28 23:54:51 +01:00
2016-12-30 00:15:51 +01:00
\index{binary search}
2016-12-28 23:54:51 +01:00
Tavallinen tapa etsiä alkiota taulukosta
on käyttää \texttt{for}-silmukkaa, joka käy läpi
taulukon sisällön alusta loppuun.
Esimerkiksi seuraava koodi etsii alkiota
$x$ taulukosta \texttt{t}.
\begin{lstlisting}
for (int i = 1; i <= n; i++) {
if (t[i] == x) // alkio x löytyi kohdasta i
}
\end{lstlisting}
Tämän menetelmän aikavaativuus on $O(n)$,
koska pahimmassa tapauksessa koko taulukko täytyy
käydä läpi.
Jos taulukon sisältö voi olla mikä tahansa,
tämä on kuitenkin tehokkain mahdollinen menetelmä,
koska saatavilla ei ole lisätietoa siitä,
mistä päin taulukkoa alkiota $x$ kannattaa etsiä.
Tilanne on toinen silloin, kun taulukko on
järjestyksessä.
Tässä tapauksessa haku on mahdollista toteuttaa
paljon nopeammin, koska taulukon järjestys
ohjaa etsimään alkiota oikeasta suunnasta.
Seuraavaksi käsiteltävä \key{binäärihaku}
löytää alkion järjestetystä taulukosta
tehokkaasti ajassa $O(\log n)$.
\subsubsection{Toteutus 1}
Perinteinen tapa toteuttaa binäärihaku muistuttaa sanan etsimistä
sanakirjasta. Haku puolittaa joka askeleella hakualueen taulukossa,
kunnes lopulta etsittävä alkio löytyy tai osoittautuu,
että sitä ei ole taulukossa.
Haku tarkistaa ensin taulukon keskimmäisen alkion.
Jos keskimmäinen alkio on etsittävä alkio, haku päättyy.
Muuten haku jatkuu taulukon vasempaan tai oikeaan osaan sen mukaan,
onko keskimmäinen alkio suurempi vain pienempi kuin etsittävä alkio.
Yllä olevan idean voi toteuttaa seuraavasti:
\begin{lstlisting}
int a = 1, b = n;
while (a <= b) {
int k = (a+b)/2;
if (t[k] == x) // alkio x löytyi kohdasta k
if (t[k] > x) b = k-1;
else a = k+1;
}
\end{lstlisting}
Algoritmi pitää yllä väliä $a \ldots b$, joka on
jäljellä oleva hakualue taulukossa.
Aluksi väli on $1 \ldots n$ eli koko taulukko.
Välin koko puolittuu algoritmin joka vaiheessa,
joten aikavaativuus on $O(\log n)$.
\subsubsection{Toteutus 2}
Vaihtoehtoinen tapa toteuttaa binäärihaku
perustuu taulukon tehostettuun läpikäyntiin.
Ideana on käydä taulukkoa läpi hyppien
ja hidastaa vauhtia, kun etsittävä alkio lähestyy.
Haku käy taulukkoa läpi vasemmalta oikealle aloittaen
hypyn pituudesta $n/2$.
Joka vaiheessa hypyn pituus puolittuu:
ensin $n/4$, sitten $n/8$, sitten $n/16$ jne.,
kunnes lopulta hypyn pituus on 1.
Hyppyjen jälkeen joko haettava alkio on löytynyt
tai selviää, että sitä ei ole taulukossa.
Seuraava koodi toteuttaa äskeisen idean:
\begin{lstlisting}
int k = 1;
for (int b = n/2; b >= 1; b /= 2) {
while (k+b <= n && t[k+b] <= x) k += b;
}
if (t[k] == x) // alkio x löytyi kohdasta k
\end{lstlisting}
Muuttuja $k$ on läpikäynnin kohta taulukossa
ja muuttuja $b$ on hypyn pituus.
Jos alkio $x$ esiintyy taulukossa,
sen kohta on muuttujassa $k$ algoritmin päätteeksi.
Algoritmin aikavaativuus on $O(\log n)$,
koska \texttt{while}-silmukassa oleva koodi suoritetaan
aina enintään kahdesti.
\subsubsection{Muutoskohdan etsiminen}
Käytännössä binäärihakua tarvitsee toteuttaa
harvoin alkion etsimiseen taulukosta,
koska sen sijasta voi käyttää standardikirjastoa.
Esimerkiksi C++:n funktiot \texttt{lower\_bound}
ja \texttt{upper\_bound} toteuttavat binäärihaun
ja tietorakenne \texttt{set} ylläpitää joukkoa,
jonka operaatiot ovat $O(\log n)$-aikaisia.
Sitäkin tärkeämpi binäärihaun käyttökohde on
funktion \key{muutoskohdan} etsiminen.
Oletetaan, että haluamme löytää pienimmän arvon $k$,
joka on kelvollinen ratkaisu ongelmaan.
Käytössämme on funktio $\texttt{ok}(x)$,
joka palauttaa \texttt{true}, jos $x$ on kelvollinen
ratkaisu, ja muuten \texttt{false}.
Lisäksi tiedämme, että $\texttt{ok}(x)$ on \texttt{false}
aina kun $x<k$ ja \texttt{true} aina kun $x \geq k$.
% Toisin sanoen haluamme löytää funktion \texttt{ok} \emph{muutoskohdan},
% jossa arvosta \texttt{false} tulee arvo \texttt{true}.
Tilanne näyttää seuraavalta:
\begin{center}
\begin{tabular}{r|rrrrrrrr}
$x$ & 0 & 1 & $\cdots$ & $k-1$ & $k$ & $k+1$ & $\cdots$ \\
\hline
$\texttt{ok}(x)$ & \texttt{false} & \texttt{false}
& $\cdots$ & \texttt{false} & \texttt{true} & \texttt{true} & $\cdots$ \\
\end{tabular}
\end{center}
\noindent
Nyt muutoskohta on mahdollista etsiä käyttämällä
binäärihakua:
\begin{lstlisting}
int x = -1;
for (int b = z; b >= 1; b /= 2) {
while (!ok(x+b)) x += b;
}
int k = x+1;
\end{lstlisting}
Haku etsii suurimman $x$:n arvon,
jolla $\texttt{ok}(x)$ on \texttt{false}.
Niinpä tästä seuraava arvo $k=x+1$
on pienin arvo, jolla $\texttt{ok}(k)$ on \texttt{true}.
Hypyn aloituspituus $z$ tulee olla
sopiva suuri luku, esimerkiksi sellainen,
jolla $\texttt{ok}(z)$ on varmasti \texttt{true}.
Algoritmi kutsuu $O(\log z)$ kertaa funktiota
\texttt{ok}, joten kokonaisaikavaativuus
riippuu siitä, kauanko funktion \texttt{ok}
suoritus kestää.
Esimerkiksi jos ratkaisun tarkastus
vie aikaa $O(n)$, niin kokonaisaikavaativuus
on $O(n \log z)$.
\subsubsection{Huippuarvon etsiminen}
Binäärihaulla voi myös etsiä
suurimman arvon funktiolle,
joka on ensin kasvava ja sitten laskeva.
Toisin sanoen tehtävänä on etsiä arvo
$k$ niin, että
\begin{itemize}
\item
$f(x)<f(x+1)$, kun $x<k$, ja
\item
$f(x)>f(x+1)$, kun $x >= k$.
\end{itemize}
Ideana on etsiä binäärihaulla
viimeinen kohta $x$,
jossa pätee $f(x)<f(x+1)$.
Tällöin $k=x+1$,
koska pätee $f(x+1)>f(x+2)$.
Seuraava koodi toteuttaa haun:
\begin{lstlisting}
int x = -1;
for (int b = z; b >= 1; b /= 2) {
while (f(x+b) < f(x+b+1)) x += b;
}
int k = x+1;
\end{lstlisting}
Huomaa, että toisin kuin tavallisessa binäärihaussa,
tässä ei ole sallittua,
että peräkkäiset arvot olisivat yhtä suuria.
Silloin ei olisi mahdollista tietää,
mihin suuntaan hakua tulee jatkaa.