2016-12-28 23:54:51 +01:00
|
|
|
\chapter{Basics of graphs}
|
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
Many programming problems can be solved by
|
2017-02-17 21:13:30 +01:00
|
|
|
modeling the problem as a graph problem
|
2017-02-04 23:59:31 +01:00
|
|
|
and using an appropriate graph algorithm.
|
2017-01-07 15:34:11 +01:00
|
|
|
A typical example of a graph is a network
|
|
|
|
of roads and cities in a country.
|
|
|
|
Sometimes, though, the graph is hidden
|
2017-02-17 21:13:30 +01:00
|
|
|
in the problem and it may be difficult to detect it.
|
2017-01-07 15:34:11 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
This part of the book discusses graph algorithms,
|
|
|
|
especially focusing on topics that
|
|
|
|
are important in competitive programming.
|
2017-02-05 00:04:18 +01:00
|
|
|
In this chapter, we go through concepts
|
2017-02-04 23:59:31 +01:00
|
|
|
related to graphs,
|
|
|
|
and study different ways to represent graphs in algorithms.
|
2017-01-07 15:34:11 +01:00
|
|
|
|
2017-02-17 21:13:30 +01:00
|
|
|
\section{Graph terminology}
|
2017-01-07 15:34:11 +01:00
|
|
|
|
|
|
|
\index{graph}
|
|
|
|
\index{node}
|
|
|
|
\index{edge}
|
|
|
|
|
|
|
|
A \key{graph} consists of \key{nodes}
|
|
|
|
and \key{edges} between them.
|
|
|
|
In this book,
|
|
|
|
the variable $n$ denotes the number of nodes
|
|
|
|
in a graph, and the variable $m$ denotes
|
|
|
|
the number of edges.
|
2017-02-04 23:59:31 +01:00
|
|
|
The nodes are numbered
|
2017-01-07 15:34:11 +01:00
|
|
|
using integers $1,2,\ldots,n$.
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
For example, the following graph consists of 5 nodes and 7 edges:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (1) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (5);
|
|
|
|
\path[draw,thick,-] (4) -- (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{path}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
A \key{path} leads from node $a$ to node $b$
|
|
|
|
through edges of the graph.
|
2017-01-07 15:34:11 +01:00
|
|
|
The \key{length} of a path is the number of
|
2017-02-04 23:59:31 +01:00
|
|
|
edges in it.
|
2017-02-17 21:13:30 +01:00
|
|
|
For example, the above graph contains
|
|
|
|
the path $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$
|
|
|
|
from node 1 to node 5:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (1) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (5);
|
|
|
|
\path[draw,thick,-] (4) -- (5);
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) -- (3);
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\index{cycle}
|
|
|
|
|
|
|
|
A path is a \key{cycle} if the first and last
|
|
|
|
node is the same.
|
|
|
|
For example, the above graph contains
|
|
|
|
the cycle $1 \rightarrow 3 \rightarrow 4 \rightarrow 1$.
|
|
|
|
A path is \key{simple} if each node appears
|
|
|
|
at most once in the path.
|
|
|
|
|
|
|
|
|
|
|
|
%
|
|
|
|
% \begin{itemize}
|
|
|
|
% \item $1 \rightarrow 2 \rightarrow 5$ (length 2)
|
|
|
|
% \item $1 \rightarrow 4 \rightarrow 5$ (length 2)
|
|
|
|
% \item $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ (length 3)
|
|
|
|
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ (length 3)
|
|
|
|
% \item $1 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 3)
|
|
|
|
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 4)
|
|
|
|
% \end{itemize}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Connectivity}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{connected graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
A graph is \key{connected} if there is path
|
2017-01-07 15:34:11 +01:00
|
|
|
between any two nodes.
|
|
|
|
For example, the following graph is connected:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (2) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
The following graph is not connected,
|
|
|
|
because it is not possible to get
|
|
|
|
from node 4 to any other node:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (2) -- (3);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
\index{component}
|
2017-01-07 15:34:11 +01:00
|
|
|
|
|
|
|
The connected parts of a graph are
|
2017-02-04 23:59:31 +01:00
|
|
|
called its \key{components}.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, the following graph
|
|
|
|
contains three components:
|
2016-12-28 23:54:51 +01:00
|
|
|
$\{1,\,2,\,3\}$,
|
2017-01-07 15:34:11 +01:00
|
|
|
$\{4,\,5,\,6,\,7\}$ and
|
2016-12-28 23:54:51 +01:00
|
|
|
$\{8\}$.
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.8]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
|
|
|
|
\node[draw, circle] (6) at (6,1) {$6$};
|
|
|
|
\node[draw, circle] (7) at (9,1) {$7$};
|
|
|
|
\node[draw, circle] (4) at (6,3) {$4$};
|
|
|
|
\node[draw, circle] (5) at (9,3) {$5$};
|
|
|
|
|
|
|
|
\node[draw, circle] (8) at (11,2) {$8$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (2) -- (3);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (4) -- (5);
|
|
|
|
\path[draw,thick,-] (5) -- (7);
|
|
|
|
\path[draw,thick,-] (6) -- (7);
|
|
|
|
\path[draw,thick,-] (6) -- (4);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{tree}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
A \key{tree} is a connected graph
|
2017-02-04 23:59:31 +01:00
|
|
|
that consists of $n$ nodes and $n-1$ edges.
|
|
|
|
There is a unique path
|
|
|
|
between any two nodes in a tree.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, the following graph is a tree:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
%\path[draw,thick,-] (1) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (5);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
%\path[draw,thick,-] (4) -- (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Edge directions}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{directed graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
A graph is \key{directed}
|
2017-02-04 23:59:31 +01:00
|
|
|
if the edges can be traversed
|
|
|
|
in one direction only.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, the following graph is directed:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (5);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- (5);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- (1);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-02-17 21:13:30 +01:00
|
|
|
The above graph contains
|
|
|
|
the path $3 \rightarrow 1 \rightarrow 2 \rightarrow 5$
|
|
|
|
from node $3$ to node $5$,
|
2017-02-04 23:59:31 +01:00
|
|
|
but there is no path from node $5$ to node $3$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Edge weights}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{weighted graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
In a \key{weighted} graph, each edge is assigned
|
|
|
|
a \key{weight}.
|
2017-02-17 21:13:30 +01:00
|
|
|
Often the weights are interpreted as edge lengths.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, the following graph is weighted:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:5] {} (2);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=left:1] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:7] {} (5);
|
|
|
|
\path[draw,thick,-] (4) -- node[font=\small,label=below:3] {} (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
The length of a path in a weighted graph
|
|
|
|
is the sum of edge weights on the path.
|
|
|
|
For example, in the above graph,
|
|
|
|
the length of the path
|
|
|
|
$1 \rightarrow 2 \rightarrow 5$ is $12$
|
|
|
|
and the length of the path
|
2017-01-07 15:34:11 +01:00
|
|
|
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ is $11$.
|
2017-02-04 23:59:31 +01:00
|
|
|
The latter path is the \key{shortest} path from node $1$ to node $5$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Neighbors and degrees}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{neighbor}
|
|
|
|
\index{degree}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
Two nodes are \key{neighbors} or \key{adjacent}
|
2017-02-04 23:59:31 +01:00
|
|
|
if there is an edge between them.
|
2017-01-07 15:34:11 +01:00
|
|
|
The \key{degree} of a node
|
|
|
|
is the number of its neighbors.
|
|
|
|
For example, in the following graph,
|
|
|
|
the neighbors of node 2 are 1, 4 and 5,
|
|
|
|
so its degree is 3.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (1) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (5);
|
|
|
|
%\path[draw,thick,-] (4) -- (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
The sum of degrees in a graph is always $2m$,
|
|
|
|
where $m$ is the number of edges,
|
|
|
|
because each edge
|
2017-02-17 21:13:30 +01:00
|
|
|
increases the degree of exactly two nodes by one.
|
2017-02-04 23:59:31 +01:00
|
|
|
For this reason, the sum of degrees is always even.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{regular graph}
|
|
|
|
\index{complete graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
A graph is \key{regular} if the
|
|
|
|
degree of every node is a constant $d$.
|
|
|
|
A graph is \key{complete} if the
|
|
|
|
degree of every node is $n-1$, i.e.,
|
|
|
|
the graph contains all possible edges
|
|
|
|
between the nodes.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{indegree}
|
|
|
|
\index{outdegree}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
In a directed graph, the \key{indegree}
|
2017-02-04 23:59:31 +01:00
|
|
|
of a node is the number of edges
|
|
|
|
that end at the node,
|
|
|
|
and the \key{outdegree} of a node
|
|
|
|
is the number of edges that start at the node.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, in the following graph,
|
2017-02-04 23:59:31 +01:00
|
|
|
the indegree of node 2 is 2
|
2017-02-27 21:13:33 +01:00
|
|
|
and the outdegree of node 2 is 1.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$3$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$4$};
|
|
|
|
\node[draw, circle] (5) at (6,2) {$5$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (2);
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (3);
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (4);
|
|
|
|
\path[draw,thick,<-,>=latex] (2) -- (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Colorings}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{coloring}
|
|
|
|
\index{bipartite graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
In a \key{coloring} of a graph,
|
|
|
|
each node is assigned a color so that
|
|
|
|
no adjacent nodes have the same color.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
A graph is \key{bipartite} if
|
|
|
|
it is possible to color it using two colors.
|
|
|
|
It turns out that a graph is bipartite
|
2017-02-04 23:59:31 +01:00
|
|
|
exactly when it does not contain a cycle
|
|
|
|
with an odd number of edges.
|
2017-01-07 15:34:11 +01:00
|
|
|
For example, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$2$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$3$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$5$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$6$};
|
|
|
|
\node[draw, circle] (5) at (-2,1) {$4$};
|
|
|
|
\node[draw, circle] (6) at (-2,3) {$1$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-02-04 23:59:31 +01:00
|
|
|
is bipartite, because it can be colored as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle, fill=blue!40] (1) at (1,3) {$2$};
|
|
|
|
\node[draw, circle, fill=red!40] (2) at (4,3) {$3$};
|
|
|
|
\node[draw, circle, fill=red!40] (3) at (1,1) {$5$};
|
|
|
|
\node[draw, circle, fill=blue!40] (4) at (4,1) {$6$};
|
|
|
|
\node[draw, circle, fill=red!40] (5) at (-2,1) {$4$};
|
|
|
|
\node[draw, circle, fill=blue!40] (6) at (-2,3) {$1$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-02-17 21:13:30 +01:00
|
|
|
However, the graph
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$2$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$3$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$5$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$6$};
|
|
|
|
\node[draw, circle] (5) at (-2,1) {$4$};
|
|
|
|
\node[draw, circle] (6) at (-2,3) {$1$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- (6);
|
|
|
|
\path[draw,thick,-] (1) -- (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
is not bipartite, because it is not possible to color
|
|
|
|
the following cycle of three nodes using two colors:
|
2017-02-04 23:59:31 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$2$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$3$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$5$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$6$};
|
|
|
|
\node[draw, circle] (5) at (-2,1) {$4$};
|
|
|
|
\node[draw, circle] (6) at (-2,3) {$1$};
|
|
|
|
\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- (6);
|
|
|
|
\path[draw,thick,-] (1) -- (6);
|
2017-02-17 21:13:30 +01:00
|
|
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (1) -- (3);
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (6) -- (1);
|
2017-02-04 23:59:31 +01:00
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\subsubsection{Simplicity}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
\index{simple graph}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:34:11 +01:00
|
|
|
A graph is \key{simple}
|
2017-02-04 23:59:31 +01:00
|
|
|
if no edge starts and ends at the same node,
|
2017-01-07 15:34:11 +01:00
|
|
|
and there are no multiple
|
|
|
|
edges between two nodes.
|
2017-02-04 23:59:31 +01:00
|
|
|
Often we assume that graphs are simple.
|
2017-02-17 21:13:30 +01:00
|
|
|
For example, the following graph is \emph{not} simple:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$2$};
|
|
|
|
\node[draw, circle] (2) at (4,3) {$3$};
|
|
|
|
\node[draw, circle] (3) at (1,1) {$5$};
|
|
|
|
\node[draw, circle] (4) at (4,1) {$6$};
|
|
|
|
\node[draw, circle] (5) at (-2,1) {$4$};
|
|
|
|
\node[draw, circle] (6) at (-2,3) {$1$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) edge [bend right=20] (2);
|
|
|
|
\path[draw,thick,-] (2) edge [bend right=20] (1);
|
|
|
|
%\path[draw,thick,-] (1) -- (2);
|
|
|
|
\path[draw,thick,-] (1) -- (3);
|
|
|
|
\path[draw,thick,-] (3) -- (4);
|
|
|
|
\path[draw,thick,-] (2) -- (4);
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- (6);
|
|
|
|
|
|
|
|
\tikzset{every loop/.style={in=135,out=190}}
|
|
|
|
\path[draw,thick,-] (5) edge [loop left] (5);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\section{Graph representation}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
There are several ways to represent graphs
|
|
|
|
in algorithms.
|
2017-01-07 15:57:20 +01:00
|
|
|
The choice of a data structure
|
|
|
|
depends on the size of the graph and
|
2017-02-04 23:59:31 +01:00
|
|
|
the way the algorithm processes it.
|
2017-02-17 21:13:30 +01:00
|
|
|
Next we will go through three common representations.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\subsubsection{Adjacency list representation}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\index{adjacency list}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
In the adjacency list representation,
|
|
|
|
each node $x$ in the graph is assigned an \key{adjacency list}
|
|
|
|
that consists of nodes
|
|
|
|
to which there is an edge from $x$.
|
|
|
|
Adjacency lists are the most popular
|
2017-02-17 21:13:30 +01:00
|
|
|
way to represent graphs, and most algorithms can be
|
2017-02-04 23:59:31 +01:00
|
|
|
efficiently implemented using them.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
A convenient way to store the adjacency lists is to declare
|
|
|
|
an array of vectors as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
vector<int> adj[N];
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-02-17 21:13:30 +01:00
|
|
|
The constant $N$ is chosen so that all
|
|
|
|
adjacency lists can be stored.
|
2017-01-07 15:57:20 +01:00
|
|
|
For example, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-07 15:57:20 +01:00
|
|
|
can be stored as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
adj[1].push_back(2);
|
|
|
|
adj[2].push_back(3);
|
|
|
|
adj[2].push_back(4);
|
|
|
|
adj[3].push_back(4);
|
|
|
|
adj[4].push_back(1);
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
If the graph is undirected, it can be stored in a similar way,
|
2017-02-17 21:13:30 +01:00
|
|
|
but each edge is added in both directions.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
For a weighted graph, the structure can be extended
|
2017-01-07 15:57:20 +01:00
|
|
|
as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
vector<pair<int,int>> adj[N];
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
If there is an edge from node $a$ to node $b$
|
|
|
|
with weight $w$, the adjacency list of node $a$
|
|
|
|
contains the pair $(b,w)$.
|
2017-01-07 15:57:20 +01:00
|
|
|
For example, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-07 15:57:20 +01:00
|
|
|
can be stored as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
adj[1].push_back({2,5});
|
|
|
|
adj[2].push_back({3,7});
|
|
|
|
adj[2].push_back({4,6});
|
|
|
|
adj[3].push_back({4,5});
|
|
|
|
adj[4].push_back({1,2});
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
The benefit in using adjacency lists is that
|
|
|
|
we can efficiently find the nodes to which
|
2017-02-17 21:13:30 +01:00
|
|
|
we can move from a given node through an edge.
|
2017-02-04 23:59:31 +01:00
|
|
|
For example, the following loop goes through all nodes
|
|
|
|
to which we can move from node $s$:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
for (auto u : adj[s]) {
|
2017-01-07 15:57:20 +01:00
|
|
|
// process node u
|
2016-12-28 23:54:51 +01:00
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\subsubsection{Adjacency matrix representation}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\index{adjacency matrix}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
An \key{adjacency matrix} is a two-dimensional array
|
2017-02-17 21:13:30 +01:00
|
|
|
that indicates which edges the graph contains.
|
2017-02-04 23:59:31 +01:00
|
|
|
We can efficiently check from an adjacency matrix
|
2017-01-07 15:57:20 +01:00
|
|
|
if there is an edge between two nodes.
|
2017-02-04 23:59:31 +01:00
|
|
|
The matrix can be stored as an array
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
int mat[N][N];
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
where each value $\texttt{mat}[a][b]$ indicates
|
2017-01-07 15:57:20 +01:00
|
|
|
whether the graph contains an edge from
|
|
|
|
node $a$ to node $b$.
|
|
|
|
If the edge is included in the graph,
|
2017-04-17 14:27:43 +02:00
|
|
|
then $\texttt{mat}[a][b]=1$,
|
|
|
|
and otherwise $\texttt{mat}[a][b]=0$.
|
2017-01-07 15:57:20 +01:00
|
|
|
For example, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-07 15:57:20 +01:00
|
|
|
can be represented as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.7]
|
|
|
|
\draw (0,0) grid (4,4);
|
|
|
|
\node at (0.5,0.5) {1};
|
|
|
|
\node at (1.5,0.5) {0};
|
|
|
|
\node at (2.5,0.5) {0};
|
|
|
|
\node at (3.5,0.5) {0};
|
|
|
|
\node at (0.5,1.5) {0};
|
|
|
|
\node at (1.5,1.5) {0};
|
|
|
|
\node at (2.5,1.5) {0};
|
|
|
|
\node at (3.5,1.5) {1};
|
|
|
|
\node at (0.5,2.5) {0};
|
|
|
|
\node at (1.5,2.5) {0};
|
|
|
|
\node at (2.5,2.5) {1};
|
|
|
|
\node at (3.5,2.5) {1};
|
|
|
|
\node at (0.5,3.5) {0};
|
|
|
|
\node at (1.5,3.5) {1};
|
|
|
|
\node at (2.5,3.5) {0};
|
|
|
|
\node at (3.5,3.5) {0};
|
|
|
|
\node at (-0.5,0.5) {4};
|
|
|
|
\node at (-0.5,1.5) {3};
|
|
|
|
\node at (-0.5,2.5) {2};
|
|
|
|
\node at (-0.5,3.5) {1};
|
|
|
|
\node at (0.5,4.5) {1};
|
|
|
|
\node at (1.5,4.5) {2};
|
|
|
|
\node at (2.5,4.5) {3};
|
|
|
|
\node at (3.5,4.5) {4};
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-03-07 17:54:41 +01:00
|
|
|
If the graph is weighted, the adjacency matrix
|
2017-01-07 15:57:20 +01:00
|
|
|
representation can be extended so that
|
|
|
|
the matrix contains the weight of the edge
|
|
|
|
if the edge exists.
|
|
|
|
Using this representation, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\begin{samepage}
|
2017-01-07 15:57:20 +01:00
|
|
|
corresponds to the following matrix:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.7]
|
|
|
|
\draw (0,0) grid (4,4);
|
|
|
|
\node at (0.5,0.5) {2};
|
|
|
|
\node at (1.5,0.5) {0};
|
|
|
|
\node at (2.5,0.5) {0};
|
|
|
|
\node at (3.5,0.5) {0};
|
|
|
|
\node at (0.5,1.5) {0};
|
|
|
|
\node at (1.5,1.5) {0};
|
|
|
|
\node at (2.5,1.5) {0};
|
|
|
|
\node at (3.5,1.5) {5};
|
|
|
|
\node at (0.5,2.5) {0};
|
|
|
|
\node at (1.5,2.5) {0};
|
|
|
|
\node at (2.5,2.5) {7};
|
|
|
|
\node at (3.5,2.5) {6};
|
|
|
|
\node at (0.5,3.5) {0};
|
|
|
|
\node at (1.5,3.5) {5};
|
|
|
|
\node at (2.5,3.5) {0};
|
|
|
|
\node at (3.5,3.5) {0};
|
|
|
|
\node at (-0.5,0.5) {4};
|
|
|
|
\node at (-0.5,1.5) {3};
|
|
|
|
\node at (-0.5,2.5) {2};
|
|
|
|
\node at (-0.5,3.5) {1};
|
|
|
|
\node at (0.5,4.5) {1};
|
|
|
|
\node at (1.5,4.5) {2};
|
|
|
|
\node at (2.5,4.5) {3};
|
|
|
|
\node at (3.5,4.5) {4};
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{samepage}
|
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
The drawback in the adjacency matrix representation
|
|
|
|
is that there are $n^2$ elements in the matrix
|
|
|
|
and usually most of them are zero.
|
|
|
|
For this reason, the representation cannot be used
|
|
|
|
if the graph is large.
|
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\subsubsection{Edge list representation}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
\index{edge list}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-02-04 23:59:31 +01:00
|
|
|
An \key{edge list} contains all edges of a graph
|
|
|
|
in some order.
|
|
|
|
This is a convenient way to represent a graph
|
2017-02-17 21:13:30 +01:00
|
|
|
if the algorithm processes all edges of the graph
|
2017-02-04 23:59:31 +01:00
|
|
|
and it is not needed to find edges that start
|
2017-01-07 15:57:20 +01:00
|
|
|
at a given node.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-07 15:57:20 +01:00
|
|
|
The edge list can be stored in a vector
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
vector<pair<int,int>> edges;
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
2017-02-04 23:59:31 +01:00
|
|
|
where each pair $(a,b)$ denotes that
|
|
|
|
there is an edge from node $a$ to node $b$.
|
2017-01-07 15:57:20 +01:00
|
|
|
Thus, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-07 15:57:20 +01:00
|
|
|
can be represented as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
edges.push_back({1,2});
|
|
|
|
edges.push_back({2,3});
|
|
|
|
edges.push_back({2,4});
|
|
|
|
edges.push_back({3,4});
|
|
|
|
edges.push_back({4,1});
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\noindent
|
2017-02-04 23:59:31 +01:00
|
|
|
If the graph is weighted, the structure can
|
|
|
|
be extended as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
vector<tuple<int,int,int>> edges;
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
2017-02-04 23:59:31 +01:00
|
|
|
Each element in this list is of the
|
|
|
|
form $(a,b,w)$, which means that there
|
|
|
|
is an edge from node $a$ to node $b$ with weight $w$.
|
2017-01-07 15:57:20 +01:00
|
|
|
For example, the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1,3) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
|
|
|
|
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\begin{samepage}
|
2017-01-07 15:57:20 +01:00
|
|
|
can be represented as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{lstlisting}
|
2017-04-17 14:27:43 +02:00
|
|
|
edges.push_back({1,2,5});
|
|
|
|
edges.push_back({2,3,7});
|
|
|
|
edges.push_back({2,4,6});
|
|
|
|
edges.push_back({3,4,5});
|
|
|
|
edges.push_back({4,1,2});
|
2016-12-28 23:54:51 +01:00
|
|
|
\end{lstlisting}
|
2017-03-07 17:54:41 +01:00
|
|
|
\end{samepage}
|