cphb/luku21.tex

706 lines
20 KiB
TeX
Raw Normal View History

2016-12-28 23:54:51 +01:00
\chapter{Number theory}
2017-01-11 18:56:44 +01:00
\index{number theory}
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
\key{Number theory} is a branch of mathematics
that studies integers.
Number theory is a fascinating field,
because many questions involving integers
are very difficult to solve even if they
seem simple at first glance.
2016-12-28 23:54:51 +01:00
2017-02-08 22:43:26 +01:00
As an example, let us consider the following equation:
2016-12-28 23:54:51 +01:00
\[x^3 + y^3 + z^3 = 33\]
2017-02-08 22:43:26 +01:00
It is easy to find three real numbers $x$, $y$ and $z$
2017-01-11 18:56:44 +01:00
that satisfy the equation.
For example, we can choose
2016-12-28 23:54:51 +01:00
\[
\begin{array}{lcl}
x = 3, \\
y = \sqrt[3]{3}, \\
z = \sqrt[3]{3}.\\
\end{array}
\]
2017-01-11 18:56:44 +01:00
However, nobody knows if there are any three
\emph{integers} $x$, $y$ and $z$
that would satisfy the equation, but this
is an open problem in number theory.
In this chapter, we will focus on basic concepts
and algorithms in number theory.
2017-02-08 22:43:26 +01:00
Throughout the chapter, we will assume that all numbers
are integers, if not otherwise stated.
2017-01-11 18:56:44 +01:00
\section{Primes and factors}
\index{divisibility}
\index{factor}
\index{divisor}
A number $a$ is a \key{factor} or \key{divisor} of a number $b$
2017-02-08 22:43:26 +01:00
if $a$ divides $b$.
2017-01-11 18:56:44 +01:00
If $a$ is a factor of $b$,
we write $a \mid b$, and otherwise we write $a \nmid b$.
For example, the factors of the number 24 are
1, 2, 3, 4, 6, 8, 12 and 24.
\index{prime}
\index{prime decomposition}
A number $n>1$ is a \key{prime}
if its only positive factors are 1 and $n$.
For example, the numbers 7, 19 and 41 are primes.
2017-02-08 22:43:26 +01:00
The number 35 is not a prime, because it can be
divided into the factors $5 \cdot 7 = 35$.
2017-01-11 18:56:44 +01:00
For each number $n>1$, there is a unique
\key{prime factorization}
2016-12-28 23:54:51 +01:00
\[ n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},\]
2017-01-11 18:56:44 +01:00
where $p_1,p_2,\ldots,p_k$ are primes and
$\alpha_1,\alpha_2,\ldots,\alpha_k$ are positive numbers.
For example, the prime factorization for the number 84 is
2016-12-28 23:54:51 +01:00
\[84 = 2^2 \cdot 3^1 \cdot 7^1.\]
2017-01-11 18:56:44 +01:00
The \key{number of factors} of a number $n$ is
2016-12-28 23:54:51 +01:00
\[\tau(n)=\prod_{i=1}^k (\alpha_i+1),\]
2017-01-11 18:56:44 +01:00
because for each prime $p_i$, there are
$\alpha_i+1$ ways to choose how many times
it appears in the factor.
For example, the number of factors
of the number 84 is
$\tau(84)=3 \cdot 2 \cdot 2 = 12$.
The factors are
1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84.
The \key{sum of factors} of $n$ is
2016-12-28 23:54:51 +01:00
\[\sigma(n)=\prod_{i=1}^k (1+p_i+\ldots+p_i^{\alpha_i}) = \prod_{i=1}^k \frac{p_i^{a_i+1}-1}{p_i-1},\]
2017-02-18 20:17:54 +01:00
where the latter formula is based on the geometric progression formula.
2017-01-11 18:56:44 +01:00
For example, the sum of factors of the number 84 is
2016-12-28 23:54:51 +01:00
\[\sigma(84)=\frac{2^3-1}{2-1} \cdot \frac{3^2-1}{3-1} \cdot \frac{7^2-1}{7-1} = 7 \cdot 4 \cdot 8 = 224.\]
2017-01-11 18:56:44 +01:00
The \key{product of factors} of $n$ is
2016-12-28 23:54:51 +01:00
\[\mu(n)=n^{\tau(n)/2},\]
2017-01-11 18:56:44 +01:00
because we can form $\tau(n)/2$ pairs from the factors,
each with product $n$.
For example, the factors of the number 84
produce the pairs
$1 \cdot 84$, $2 \cdot 42$, $3 \cdot 28$, etc.,
and the product of the factors is $\mu(84)=84^6=351298031616$.
\index{perfect number}
A number $n$ is \key{perfect} if $n=\sigma(n)-n$,
2017-02-18 20:17:54 +01:00
i.e., $n$ equals the sum of its factors
2017-02-08 22:43:26 +01:00
between $1$ and $n-1$.
For example, the number 28 is perfect,
because $28=1+2+4+7+14$.
2017-01-11 18:56:44 +01:00
\subsubsection{Number of primes}
It is easy to show that there is an infinite number
of primes.
2017-02-08 22:43:26 +01:00
If the number of primes would be finite,
2017-01-11 18:56:44 +01:00
we could construct a set $P=\{p_1,p_2,\ldots,p_n\}$
2017-02-08 22:43:26 +01:00
that would contain all the primes.
2017-01-11 18:56:44 +01:00
For example, $p_1=2$, $p_2=3$, $p_3=5$, and so on.
2017-02-08 22:43:26 +01:00
However, using $P$, we could form a new prime
2017-01-11 18:56:44 +01:00
\[p_1 p_2 \cdots p_n+1\]
that is larger than all elements in $P$.
2017-02-08 22:43:26 +01:00
This is a contradiction, and the number of primes
2017-01-11 18:56:44 +01:00
has to be infinite.
\subsubsection{Density of primes}
The density of primes means how often there are primes
among the numbers.
Let $\pi(n)$ denote the number of primes between
2017-02-08 22:43:26 +01:00
$1$ and $n$. For example, $\pi(10)=4$, because
there are 4 primes between $1$ and $10$: 2, 3, 5 and 7.
2017-01-11 18:56:44 +01:00
2017-02-08 22:43:26 +01:00
It is possible to show that
2016-12-28 23:54:51 +01:00
\[\pi(n) \approx \frac{n}{\ln n},\]
2017-02-08 22:43:26 +01:00
which means that primes are quite frequent.
2017-01-11 18:56:44 +01:00
For example, the number of primes between
2017-02-08 22:43:26 +01:00
$1$ and $10^6$ is $\pi(10^6)=78498$,
2017-01-11 18:56:44 +01:00
and $10^6 / \ln 10^6 \approx 72382$.
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
\subsubsection{Conjectures}
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
There are many \emph{conjectures} involving primes.
Most people think that the conjectures are true,
but nobody has been able to prove them.
For example, the following conjectures are famous:
2016-12-28 23:54:51 +01:00
\begin{itemize}
2017-01-11 18:56:44 +01:00
\index{Goldbach's conjecture}
\item \key{Goldbach's conjecture}:
Each even integer $n>2$ can be represented as a
sum $n=a+b$ so that both $a$ and $b$ are primes.
\index{twin prime}
2017-02-08 22:43:26 +01:00
\item \key{Twin prime conjecture}:
2017-01-11 18:56:44 +01:00
There is an infinite number of pairs
of the form $\{p,p+2\}$,
where both $p$ and $p+2$ are primes.
\index{Legendre's conjecture}
\item \key{Legendre's conjecture}:
There is always a prime between numbers
$n^2$ and $(n+1)^2$, where $n$ is any positive integer.
2016-12-28 23:54:51 +01:00
\end{itemize}
2017-01-11 18:56:44 +01:00
\subsubsection{Basic algorithms}
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
If a number $n$ is not prime,
it can be represented as a product $a \cdot b$,
where $a \le \sqrt n$ or $b \le \sqrt n$,
2017-02-08 22:43:26 +01:00
so it certainly has a factor between $2$ and $\lfloor \sqrt n \rfloor$.
2017-01-11 18:56:44 +01:00
Using this observation, we can both test
if a number is prime and find the prime factorization
of a number in $O(\sqrt n)$ time.
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
The following function \texttt{prime} checks
if the given number $n$ is prime.
2017-02-08 22:43:26 +01:00
The function attempts to divide $n$ by
all numbers between $2$ and $\lfloor \sqrt n \rfloor$,
2017-01-11 18:56:44 +01:00
and if none of them divides $n$, then $n$ is prime.
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-01-11 18:56:44 +01:00
bool prime(int n) {
2016-12-28 23:54:51 +01:00
if (n < 2) return false;
for (int x = 2; x*x <= n; x++) {
if (n%x == 0) return false;
}
return true;
}
\end{lstlisting}
\noindent
2017-01-11 18:56:44 +01:00
The following function \texttt{factors}
constructs a vector that contains the prime
factorization of $n$.
The function divides $n$ by its prime factors,
and adds them to the vector.
The process ends when the remaining number $n$
2017-02-08 22:43:26 +01:00
has no factors between $2$ and $\lfloor \sqrt n \rfloor$.
2017-01-11 18:56:44 +01:00
If $n>1$, it is prime and the last factor.
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-01-11 18:56:44 +01:00
vector<int> factors(int n) {
2016-12-28 23:54:51 +01:00
vector<int> f;
for (int x = 2; x*x <= n; x++) {
while (n%x == 0) {
f.push_back(x);
n /= x;
}
}
if (n > 1) f.push_back(n);
return f;
}
\end{lstlisting}
2017-01-11 18:56:44 +01:00
Note that each prime factor appears in the vector
as many times as it divides the number.
For example, $24=2^3 \cdot 3$,
so the result of the function is $[2,2,2,3]$.
\subsubsection{Sieve of Eratosthenes}
\index{sieve of Eratosthenes}
The \key{sieve of Eratosthenes} is a preprocessing
algorithm that builds an array using which we
can efficiently check if a given number between $2 \ldots n$
2017-02-08 22:43:26 +01:00
is prime and, if it is not, find one prime factor of the number.
2017-01-11 18:56:44 +01:00
The algorithm builds an array $\texttt{a}$
2017-02-08 22:43:26 +01:00
whose positions $2,3,\ldots,n$ are used.
2017-01-11 18:56:44 +01:00
The value $\texttt{a}[k]=0$ means
that $k$ is prime,
and the value $\texttt{a}[k] \neq 0$
2017-02-08 22:43:26 +01:00
means that $k$ is not a prime and one
2017-01-11 18:56:44 +01:00
of its prime factors is $\texttt{a}[k]$.
The algorithm iterates through the numbers
$2 \ldots n$ one by one.
Always when a new prime $x$ is found,
the algorithm records that the multiples
2017-02-08 22:43:26 +01:00
of $x$ ($2x,3x,4x,\ldots$) are not primes,
2017-01-11 18:56:44 +01:00
because the number $x$ divides them.
2017-02-08 22:43:26 +01:00
For example, if $n=20$, the array is as follows:
2016-12-28 23:54:51 +01:00
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (19,1);
\node at (0.5,0.5) {$0$};
\node at (1.5,0.5) {$0$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$0$};
\node at (4.5,0.5) {$3$};
\node at (5.5,0.5) {$0$};
\node at (6.5,0.5) {$2$};
\node at (7.5,0.5) {$3$};
\node at (8.5,0.5) {$5$};
\node at (9.5,0.5) {$0$};
\node at (10.5,0.5) {$3$};
\node at (11.5,0.5) {$0$};
\node at (12.5,0.5) {$7$};
\node at (13.5,0.5) {$5$};
\node at (14.5,0.5) {$2$};
\node at (15.5,0.5) {$0$};
\node at (16.5,0.5) {$3$};
\node at (17.5,0.5) {$0$};
\node at (18.5,0.5) {$5$};
\footnotesize
\node at (0.5,1.5) {$2$};
\node at (1.5,1.5) {$3$};
\node at (2.5,1.5) {$4$};
\node at (3.5,1.5) {$5$};
\node at (4.5,1.5) {$6$};
\node at (5.5,1.5) {$7$};
\node at (6.5,1.5) {$8$};
\node at (7.5,1.5) {$9$};
\node at (8.5,1.5) {$10$};
\node at (9.5,1.5) {$11$};
\node at (10.5,1.5) {$12$};
\node at (11.5,1.5) {$13$};
\node at (12.5,1.5) {$14$};
\node at (13.5,1.5) {$15$};
\node at (14.5,1.5) {$16$};
\node at (15.5,1.5) {$17$};
\node at (16.5,1.5) {$18$};
\node at (17.5,1.5) {$19$};
\node at (18.5,1.5) {$20$};
\end{tikzpicture}
\end{center}
2017-01-11 18:56:44 +01:00
The following code implements the sieve of
Eratosthenes.
The code assumes that each element in
\texttt{a} is initially zero.
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
for (int x = 2; x <= n; x++) {
if (a[x]) continue;
for (int u = 2*x; u <= n; u += x) {
a[u] = x;
}
}
\end{lstlisting}
2017-01-11 18:56:44 +01:00
The inner loop of the algorithm will be executed
$n/x$ times for any $x$.
Thus, an upper bound for the running time
of the algorithm is the harmonic sum
2016-12-28 23:54:51 +01:00
2017-01-11 18:56:44 +01:00
\index{harmonic sum}
2016-12-28 23:54:51 +01:00
\[\sum_{x=2}^n n/x = n/2 + n/3 + n/4 + \cdots + n/n = O(n \log n).\]
2017-02-08 22:43:26 +01:00
In fact, the algorithm is even more efficient,
2017-01-11 18:56:44 +01:00
because the inner loop will be executed only if
the number $x$ is prime.
It can be shown that the time complexity of the
2017-02-08 22:43:26 +01:00
algorithm is only $O(n \log \log n)$,
a complexity very near to $O(n)$.
2017-01-11 18:56:44 +01:00
\subsubsection{Euclid's algorithm}
\index{greatest common divisor}
\index{least common multiple}
\index{Euclid's algorithm}
The \key{greatest common divisor} of
numbers $a$ and $b$, $\gcd(a,b)$,
is the greatest number that divides both $a$ and $b$,
and the \key{least common multiple} of
$a$ and $b$, $\textrm{lcm}(a,b)$,
is the smallest number that is divisible by
both $a$ and $b$.
For example,
$\gcd(24,36)=12$ and
$\textrm{lcm}(24,36)=72$.
The greatest common divisor and the least common multiple
are connected as follows:
\[\textrm{lcm}(a,b)=\frac{ab}{\textrm{gcd}(a,b)}\]
\key{Euclid's algorithm} provides an efficient way
to find the greatest common divisor of two numbers.
2017-02-08 22:43:26 +01:00
The algorithm is based on the following formula:
2016-12-28 23:54:51 +01:00
\begin{equation*}
2017-01-11 18:56:44 +01:00
\textrm{gcd}(a,b) = \begin{cases}
2016-12-28 23:54:51 +01:00
a & b = 0\\
2017-01-11 18:56:44 +01:00
\textrm{gcd}(b,a \bmod b) & b \neq 0\\
2016-12-28 23:54:51 +01:00
\end{cases}
\end{equation*}
2017-01-11 18:56:44 +01:00
For example,
\[\textrm{gcd}(24,36) = \textrm{gcd}(36,24)
= \textrm{gcd}(24,12) = \textrm{gcd}(12,0)=12.\]
The time complexity of Euclid's algorithm
2017-02-08 22:43:26 +01:00
is $O(\log n)$, where $n=\min(a,b)$.
The worst case for the algorithm is
the case when $a$ and $b$ are consecutive Fibonacci numbers.
2017-01-11 18:56:44 +01:00
For example,
\[\textrm{gcd}(13,8)=\textrm{gcd}(8,5)
=\textrm{gcd}(5,3)=\textrm{gcd}(3,2)=\textrm{gcd}(2,1)=\textrm{gcd}(1,0)=1.\]
\subsubsection{Euler's totient function}
\index{coprime}
\index{Euler's totient function}
2017-02-08 22:43:26 +01:00
Numbers $a$ and $b$ are \key{coprime}
2017-01-11 18:56:44 +01:00
if $\textrm{gcd}(a,b)=1$.
\key{Euler's totient function} $\varphi(n)$
2017-02-18 20:17:54 +01:00
gives the number of coprime numbers to $n$
2017-02-08 22:43:26 +01:00
between $1$ and $n$.
2017-01-11 18:56:44 +01:00
For example, $\varphi(12)=4$,
2017-02-18 20:17:54 +01:00
because 1, 5, 7 and 11
2017-02-08 22:43:26 +01:00
are coprime to 12.
2017-01-11 18:56:44 +01:00
The value of $\varphi(n)$ can be calculated
2017-02-08 22:43:26 +01:00
from the prime factorization of $n$
using the formula
2016-12-28 23:54:51 +01:00
\[ \varphi(n) = \prod_{i=1}^k p_i^{\alpha_i-1}(p_i-1). \]
2017-01-11 18:56:44 +01:00
For example, $\varphi(12)=2^1 \cdot (2-1) \cdot 3^0 \cdot (3-1)=4$.
Note that $\varphi(n)=n-1$ if $n$ is prime.
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
\section{Modular arithmetic}
\index{modular arithmetic}
In \key{modular arithmetic},
2017-02-08 22:43:26 +01:00
the set of available numbers is limited so
that only numbers $0,1,2,\ldots,m-1$ may be used,
2017-01-11 19:32:31 +01:00
where $m$ is a constant.
Each number $x$ is
represented by the number $x \bmod m$:
the remainder after dividing $x$ by $m$.
For example, if $m=17$, then $75$
is represented by $75 \bmod 17 = 7$.
2017-02-08 22:43:26 +01:00
Often we can take the remainder before doing
calculations.
2017-01-11 19:32:31 +01:00
In particular, the following formulas can be used:
2016-12-28 23:54:51 +01:00
\[
\begin{array}{rcl}
(x+y) \bmod m & = & (x \bmod m + y \bmod m) \bmod m \\
(x-y) \bmod m & = & (x \bmod m - y \bmod m) \bmod m \\
(x \cdot y) \bmod m & = & (x \bmod m \cdot y \bmod m) \bmod m \\
2017-02-08 22:43:26 +01:00
x^n \bmod m & = & (x \bmod m)^n \bmod m \\
2016-12-28 23:54:51 +01:00
\end{array}
\]
2017-01-11 19:32:31 +01:00
\subsubsection{Modular exponentiation}
2017-02-08 22:43:26 +01:00
There is often need to efficiently calculate
the value of $x^n \bmod m$.
2017-01-11 19:32:31 +01:00
This can be done in $O(\log n)$ time
using the following recursion:
2016-12-28 23:54:51 +01:00
\begin{equation*}
x^n = \begin{cases}
1 & n = 0\\
2017-01-11 19:32:31 +01:00
x^{n/2} \cdot x^{n/2} & \text{$n$ is even}\\
x^{n-1} \cdot x & \text{$n$ is odd}
2016-12-28 23:54:51 +01:00
\end{cases}
\end{equation*}
2017-02-08 22:43:26 +01:00
It is important that in the case of an even $n$,
the value of $x^{n/2}$ is calculated only once.
2017-01-11 19:32:31 +01:00
This guarantees that the time complexity of the
2017-02-08 22:43:26 +01:00
algorithm is $O(\log n)$, because $n$ is always halved
2017-01-11 19:32:31 +01:00
when it is even.
2016-12-28 23:54:51 +01:00
2017-02-08 22:43:26 +01:00
The following function calculates the value of
2017-01-11 19:32:31 +01:00
$x^n \bmod m$:
2016-12-28 23:54:51 +01:00
\begin{lstlisting}
2017-01-11 19:32:31 +01:00
int modpow(int x, int n, int m) {
2016-12-28 23:54:51 +01:00
if (n == 0) return 1%m;
2017-01-11 19:32:31 +01:00
int u = modpow(x,n/2,m);
2016-12-28 23:54:51 +01:00
u = (u*u)%m;
if (n%2 == 1) u = (u*x)%m;
return u;
}
\end{lstlisting}
2017-01-11 19:32:31 +01:00
\subsubsection{Fermat's theorem and Euler's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
\index{Fermat's theorem}
\index{Euler's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
\key{Fermat's theorem} states that
2017-02-08 22:43:26 +01:00
\[x^{m-1} \bmod m = 1\]
2017-01-11 19:32:31 +01:00
when $m$ is prime and $x$ and $m$ are coprime.
This also yields
2016-12-28 23:54:51 +01:00
\[x^k \bmod m = x^{k \bmod (m-1)} \bmod m.\]
2017-01-11 19:32:31 +01:00
More generally, \key{Euler's theorem} states that
2017-02-08 22:43:26 +01:00
\[x^{\varphi(m)} \bmod m = 1\]
2017-01-11 19:32:31 +01:00
when $x$ and $m$ are coprime.
Fermat's theorem follows from Euler's theorem,
because if $m$ is a prime, then $\varphi(m)=m-1$.
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
\subsubsection{Modular inverse}
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
\index{modular inverse}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
The inverse of $x$ modulo $m$
2017-01-11 19:32:31 +01:00
is a number $x^{-1}$ such that
2016-12-28 23:54:51 +01:00
\[ x x^{-1} \bmod m = 1. \]
2017-01-11 19:32:31 +01:00
For example, if $x=6$ and $m=17$,
then $x^{-1}=3$, because $6\cdot3 \bmod 17=1$.
2017-01-11 20:02:34 +01:00
Using modular inverses, we can divide numbers
modulo $m$, because division by $x$
2017-01-11 19:32:31 +01:00
corresponds to multiplication by $x^{-1}$.
For example, to evaluate the value of $36/6 \bmod 17$,
we can use the formula $2 \cdot 3 \bmod 17$,
because $36 \bmod 17 = 2$ and $6^{-1} \bmod 17 = 3$.
2017-02-08 22:43:26 +01:00
However, a modular inverse does not always exist.
2017-01-11 19:32:31 +01:00
For example, if $x=2$ and $m=4$, the equation
2017-02-08 22:43:26 +01:00
\[ x x^{-1} \bmod m = 1 \]
cannot be solved, because all multiples of the number 2
are even and the remainder can never be 1 when $m=4$.
It turns out that the value of $x^{-1} \bmod m$
can be calculated exactly when $x$ and $m$ are coprime.
2017-01-11 19:32:31 +01:00
If a modular inverse exists, it can be
calculated using the formula
2016-12-28 23:54:51 +01:00
\[
x^{-1} = x^{\varphi(m)-1}.
\]
2017-01-11 19:32:31 +01:00
If $m$ is prime, the formula becomes
2016-12-28 23:54:51 +01:00
\[
x^{-1} = x^{m-2}.
\]
2017-01-11 19:32:31 +01:00
For example, if $x=6$ and $m=17$, then
2016-12-28 23:54:51 +01:00
\[x^{-1}=6^{17-2} \bmod 17 = 3.\]
2017-01-11 19:32:31 +01:00
Using this formula, we can calculate the modular inverse
efficiently using the modular exponentation algorithm.
2016-12-28 23:54:51 +01:00
2017-01-11 19:32:31 +01:00
The above formula can be derived using Euler's theorem.
First, the modular inverse should satisfy the following equation:
2016-12-28 23:54:51 +01:00
\[
x x^{-1} \bmod m = 1.
\]
2017-01-11 19:32:31 +01:00
On the other hand, according to Euler's theorem,
2016-12-28 23:54:51 +01:00
\[
x^{\varphi(m)} \bmod m = xx^{\varphi(m)-1} \bmod m = 1,
\]
2017-01-11 19:32:31 +01:00
so the numbers $x^{-1}$ and $x^{\varphi(m)-1}$ are equal.
\subsubsection{Computer arithmetic}
2017-02-08 22:43:26 +01:00
In programming, unsigned integers are represented modulo $2^k$,
where $k$ is the number of bits of the data type.
2017-01-11 19:32:31 +01:00
A usual consequence of this is that a number wraps around
if it becomes too large.
For example, in C++, numbers of type \texttt{unsigned int}
are represented modulo $2^{32}$.
2017-02-08 22:43:26 +01:00
The following code declares an \texttt{unsigned int}
2017-01-11 19:32:31 +01:00
variable whose value is $123456789$.
After this, the value will be multiplied by itself,
and the result is
2016-12-28 23:54:51 +01:00
$123456789^2 \bmod 2^{32} = 2537071545$.
\begin{lstlisting}
unsigned int x = 123456789;
cout << x*x << "\n"; // 2537071545
\end{lstlisting}
2017-01-11 20:02:34 +01:00
\section{Solving equations}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Diophantine equation}
2016-12-28 23:54:51 +01:00
2017-02-18 20:17:54 +01:00
A \key{Diophantine equation} is an equation of the form
2016-12-28 23:54:51 +01:00
\[ ax + by = c, \]
2017-02-18 20:17:54 +01:00
where $a$, $b$ and $c$ are constants
2017-02-08 22:43:26 +01:00
and we should find the values of $x$ and $y$.
2017-01-11 20:02:34 +01:00
Each number in the equation has to be an integer.
For example, one solution for the equation
$5x+2y=11$ is $x=3$ and $y=-2$.
\index{Euclid's algorithm}
We can efficiently solve a Diophantine equation
by using Euclid's algorithm.
It turns out that we can extend Euclid's algorithm
so that it will find numbers $x$ and $y$
that satisfy the following equation:
2016-12-28 23:54:51 +01:00
\[
2017-02-08 22:43:26 +01:00
ax + by = \textrm{gcd}(a,b)
2016-12-28 23:54:51 +01:00
\]
2017-01-11 20:02:34 +01:00
A Diophantine equation can be solved if
$c$ is divisible by
$\textrm{gcd}(a,b)$,
2017-02-08 22:43:26 +01:00
and otherwise the equation cannot be solved.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{extended Euclid's algorithm}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\subsubsection*{Extended Euclid's algorithm}
2016-12-28 23:54:51 +01:00
2017-02-08 22:43:26 +01:00
As an example, let us find numbers $x$ and $y$
2017-01-11 20:02:34 +01:00
that satisfy the following equation:
2016-12-28 23:54:51 +01:00
\[
2017-01-11 20:02:34 +01:00
39x + 15y = 12
2016-12-28 23:54:51 +01:00
\]
2017-01-11 20:02:34 +01:00
The equation can be solved, because
2017-02-08 22:43:26 +01:00
$\textrm{gcd}(39,15)=3$ and $3 \mid 12$.
2017-01-11 20:02:34 +01:00
When Euclid's algorithm calculates the
greatest common divisor of 39 and 15,
it produces the following sequence of function calls:
2016-12-28 23:54:51 +01:00
\[
2017-01-11 20:02:34 +01:00
\textrm{gcd}(39,15) = \textrm{gcd}(15,9)
= \textrm{gcd}(9,6) = \textrm{gcd}(6,3)
= \textrm{gcd}(3,0) = 3 \]
This corresponds to the following equations:
2016-12-28 23:54:51 +01:00
\[
\begin{array}{lcl}
39 - 2 \cdot 15 & = & 9 \\
15 - 1 \cdot 9 & = & 6 \\
9 - 1 \cdot 6 & = & 3 \\
\end{array}
\]
2017-01-11 20:02:34 +01:00
Using these equations, we can derive
2016-12-28 23:54:51 +01:00
\[
39 \cdot 2 + 15 \cdot (-5) = 3
\]
2017-01-11 20:02:34 +01:00
and by multiplying this by 4, the result is
2016-12-28 23:54:51 +01:00
\[
39 \cdot 8 + 15 \cdot (-20) = 12,
\]
2017-02-18 20:17:54 +01:00
so a solution to the equation is
2017-01-11 20:02:34 +01:00
$x=8$ and $y=-20$.
2016-12-28 23:54:51 +01:00
2017-02-18 20:17:54 +01:00
A solution to a Diophantine equation is not unique,
2017-01-11 20:02:34 +01:00
but we can form an infinite number of solutions
if we know one solution.
2017-02-08 22:43:26 +01:00
If a pair $(x,y)$ is a solution, then also all pairs
2017-01-11 20:02:34 +01:00
\[(x+\frac{kb}{\textrm{gcd}(a,b)},y-\frac{ka}{\textrm{gcd}(a,b)})\]
2017-02-08 22:43:26 +01:00
are solutions, where $k$ is any integer.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\subsubsection{Chinese remainder theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Chinese remainder theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
The \key{Chinese remainder theorem} solves
a group of equations of the form
2016-12-28 23:54:51 +01:00
\[
\begin{array}{lcl}
x & = & a_1 \bmod m_1 \\
x & = & a_2 \bmod m_2 \\
\cdots \\
x & = & a_n \bmod m_n \\
\end{array}
\]
2017-01-11 20:02:34 +01:00
where all pairs of $m_1,m_2,\ldots,m_n$ are coprime.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
Let $x^{-1}_m$ be the inverse of $x$ modulo $m$, and
2016-12-28 23:54:51 +01:00
\[ X_k = \frac{m_1 m_2 \cdots m_n}{m_k}.\]
2017-02-18 20:17:54 +01:00
Using this notation, a solution to the equations is
2016-12-28 23:54:51 +01:00
\[x = a_1 X_1 {X_1}^{-1}_{m_1} + a_2 X_2 {X_2}^{-1}_{m_2} + \cdots + a_n X_n {X_n}^{-1}_{m_n}.\]
2017-01-11 20:02:34 +01:00
In this solution, it holds for each number
$k=1,2,\ldots,n$ that
2016-12-28 23:54:51 +01:00
\[a_k X_k {X_k}^{-1}_{m_k} \bmod m_k = a_k,\]
2017-01-11 20:02:34 +01:00
because
2016-12-28 23:54:51 +01:00
\[X_k {X_k}^{-1}_{m_k} \bmod m_k = 1.\]
2017-01-11 20:02:34 +01:00
Since all other terms in the sum are divisible by $m_k$,
they have no effect on the remainder,
and the remainder by $m_k$ for the whole sum is $a_k$.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
For example, a solution for
2016-12-28 23:54:51 +01:00
\[
\begin{array}{lcl}
x & = & 3 \bmod 5 \\
x & = & 4 \bmod 7 \\
x & = & 2 \bmod 3 \\
\end{array}
\]
2017-01-11 20:02:34 +01:00
is
2016-12-28 23:54:51 +01:00
\[ 3 \cdot 21 \cdot 1 + 4 \cdot 15 \cdot 1 + 2 \cdot 35 \cdot 2 = 263.\]
2017-01-11 20:02:34 +01:00
Once we have found a solution $x$,
we can create an infinite number of other solutions,
because all numbers of the form
2016-12-28 23:54:51 +01:00
\[x+m_1 m_2 \cdots m_n\]
2017-01-11 20:02:34 +01:00
are solutions.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\section{Other results}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\subsubsection{Lagrange's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Lagrange's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\key{Lagrange's theorem} states that every positive integer
can be represented as a sum of four squares, i.e.,
$a^2+b^2+c^2+d^2$.
For example, the number 123 can be represented
as the sum $8^2+5^2+5^2+3^2$.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\subsubsection{Zeckendorf's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Zeckendorf's theorem}
\index{Fibonacci number}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\key{Zeckendorf's theorem} states that every
positive integer has a unique representation
as a sum of Fibonacci numbers such that
2017-02-08 22:43:26 +01:00
no two numbers are equal or consecutive
2017-01-11 20:02:34 +01:00
Fibonacci numbers.
For example, the number 74 can be represented
as the sum $55+13+5+1$.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\subsubsection{Pythagorean triples}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Pythagorean triple}
\index{Euclid's formula}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
A \key{Pythagorean triple} is a triple $(a,b,c)$
that satisfies the Pythagorean theorem
$a^2+b^2=c^2$, which means that there is a right triangle
with side lengths $a$, $b$ and $c$.
For example, $(3,4,5)$ is a Pythagorean triple.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
If $(a,b,c)$ is a Pythagorean triple,
all triples of the form $(ka,kb,kc)$
are also Pythagorean triples where $k>1$.
A Pythagorean triple is \key{primitive} if
$a$, $b$ and $c$ are coprime,
and all Pythagorean triples can be constructed
from primitive triples using a multiplier $k$.
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\key{Euclid's formula} can be used to produce
all primitive Pythagorean triples.
Each such triple is of the form
2016-12-28 23:54:51 +01:00
\[(n^2-m^2,2nm,n^2+m^2),\]
2017-01-11 20:02:34 +01:00
where $0<m<n$, $n$ and $m$ are coprime
2017-02-08 22:43:26 +01:00
and at least one of $n$ and $m$ is even.
2017-01-11 20:02:34 +01:00
For example, when $m=1$ and $n=2$, the formula
produces the smallest Pythagorean triple
2016-12-28 23:54:51 +01:00
\[(2^2-1^2,2\cdot2\cdot1,2^2+1^2)=(3,4,5).\]
2017-01-11 20:02:34 +01:00
\subsubsection{Wilson's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\index{Wilson's theorem}
2016-12-28 23:54:51 +01:00
2017-01-11 20:02:34 +01:00
\key{Wilson's theorem} states that a number $n$
is prime exactly when
2016-12-28 23:54:51 +01:00
\[(n-1)! \bmod n = n-1.\]
2017-01-11 20:02:34 +01:00
For example, the number 11 is prime, because
2016-12-28 23:54:51 +01:00
\[10! \bmod 11 = 10,\]
2017-01-11 20:02:34 +01:00
and the number 12 is not prime, because
2016-12-28 23:54:51 +01:00
\[11! \bmod 12 = 0 \neq 11.\]
2017-02-08 23:18:42 +01:00
Hence, Wilson's theorem can be used to find out
whether a number is prime. However, in practice, the theorem cannot be
2017-02-08 22:43:26 +01:00
applied to large values of $n$, because it is difficult
to calculate the value of $(n-1)!$ when $n$ is large.
2016-12-28 23:54:51 +01:00