From 101a111e82a4b07c6c4ea3cb943b991c81a2a4ce Mon Sep 17 00:00:00 2001 From: Antti H S Laaksonen Date: Sat, 25 Feb 2017 22:20:40 +0200 Subject: [PATCH] References etc. --- chapter22.tex | 14 ++++++++++---- list.tex | 10 ++++++++++ 2 files changed, 20 insertions(+), 4 deletions(-) diff --git a/chapter22.tex b/chapter22.tex index e6fb642..bc9ba31 100644 --- a/chapter22.tex +++ b/chapter22.tex @@ -342,7 +342,8 @@ corresponds to the binomial coefficient formula. \index{Catalan number} -The \key{Catalan number} $C_n$ equals the +The \key{Catalan number}\footnote{E. C. Catalan (1814--1894) +was a Belgian mathematician.} $C_n$ equals the number of valid parenthesis expressions that consist of $n$ left parentheses and $n$ right parentheses. @@ -678,7 +679,8 @@ elements should be changed. \index{Burnside's lemma} -\key{Burnside's lemma} can be used to count +\key{Burnside's lemma}\footnote{Actually, Burnside did not discover this lemma; +he only mentioned it in his book \cite{bur97}.} can be used to count the number of combinations so that only one representative is counted for each group of symmetric combinations. @@ -764,7 +766,10 @@ with 3 colors is \index{Cayley's formula} -\key{Cayley's formula} states that +\key{Cayley's formula}\footnote{While the formula +is named after A. Cayley, +who studied it in 1889, +it was discovered earlier by C. W. Borchardt in 1860.} states that there are $n^{n-2}$ labeled trees that contain $n$ nodes. The nodes are labeled $1,2,\ldots,n$, @@ -827,7 +832,8 @@ be derived using Prüfer codes. \index{Prüfer code} -A \key{Prüfer code} is a sequence of +A \key{Prüfer code}\footnote{In 1918, H. Prüfer proved +Cayley's theorem using Prüfer codes \cite{pru18}.} is a sequence of $n-2$ numbers that describes a labeled tree. The code is constructed by following a process that removes $n-2$ leaves from the tree. diff --git a/list.tex b/list.tex index 1131cfa..2a4082b 100644 --- a/list.tex +++ b/list.tex @@ -40,6 +40,11 @@ Nim, a game with a complete mathematical theory. \emph{Annals of Mathematics}, 3(1/4):35--39, 1901. +\bibitem{bur97} + W. Burnside. + \emph{Theory of Groups of Finite Order}, + Cambridge University Press, 1897. + \bibitem{cod15} Codeforces: On ''Mo's algorithm'', \url{http://codeforces.com/blog/entry/20032} @@ -242,6 +247,11 @@ Shortest connection networks and some generalizations. \emph{Bell System Technical Journal}, 36(6):1389--1401, 1957. +\bibitem{pru18} + H. Prüfer. + Neuer Beweis eines Satzes über Permutationen. + \emph{Arch. Math. Phys}, 27:742--744, 1918. + \bibitem{q27} 27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting. \url{https://github.com/preusser/q27}