Add references to the tiling formula
This commit is contained in:
parent
a8e456ce15
commit
180fe097e8
|
@ -987,10 +987,9 @@ $2^m$ distinct rows and the time complexity is
|
||||||
$O(n 2^{2m})$.
|
$O(n 2^{2m})$.
|
||||||
|
|
||||||
As a final note, there is also a surprising direct formula
|
As a final note, there is also a surprising direct formula
|
||||||
for calculating the number of tilings:
|
for calculating the number of tilings\footnote{Surprisingly,
|
||||||
% \footnote{Surprisingly,
|
this formula was discovered in 1961 by two research teams \cite{kas61,tem61}
|
||||||
% this formula was discovered independently
|
that worked independently.}:
|
||||||
% by \cite{kas61} and \cite{tem61} in 1961.}:
|
|
||||||
\[ \prod_{a=1}^{\lceil n/2 \rceil} \prod_{b=1}^{\lceil m/2 \rceil} 4 \cdot (\cos^2 \frac{\pi a}{n + 1} + \cos^2 \frac{\pi b}{m+1})\]
|
\[ \prod_{a=1}^{\lceil n/2 \rceil} \prod_{b=1}^{\lceil m/2 \rceil} 4 \cdot (\cos^2 \frac{\pi a}{n + 1} + \cos^2 \frac{\pi b}{m+1})\]
|
||||||
This formula is very efficient, because it calculates
|
This formula is very efficient, because it calculates
|
||||||
the number of tilings in $O(nm)$ time,
|
the number of tilings in $O(nm)$ time,
|
||||||
|
|
23
list.tex
23
list.tex
|
@ -40,10 +40,15 @@
|
||||||
\emph{Programming Pearls}.
|
\emph{Programming Pearls}.
|
||||||
Addison-Wesley, 1999 (2nd edition).
|
Addison-Wesley, 1999 (2nd edition).
|
||||||
|
|
||||||
|
\bibitem{ben80}
|
||||||
|
J. Bentley and D. Wood.
|
||||||
|
An optimal worst case algorithm for reporting intersections of rectangles.
|
||||||
|
\emph{IEEE Transactions on Computers}, C-29(7):571--577, 1980.
|
||||||
|
|
||||||
\bibitem{bou01}
|
\bibitem{bou01}
|
||||||
C. L. Bouton.
|
C. L. Bouton.
|
||||||
Nim, a game with a complete mathematical theory.
|
Nim, a game with a complete mathematical theory.
|
||||||
pro \emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||||
|
|
||||||
% \bibitem{bur97}
|
% \bibitem{bur97}
|
||||||
% W. Burnside.
|
% W. Burnside.
|
||||||
|
@ -218,10 +223,10 @@ pro \emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||||
J. Kleinberg and É. Tardos.
|
J. Kleinberg and É. Tardos.
|
||||||
\emph{Algorithm Design}, Pearson, 2005.
|
\emph{Algorithm Design}, Pearson, 2005.
|
||||||
|
|
||||||
% \bibitem{kas61}
|
\bibitem{kas61}
|
||||||
% P. W. Kasteleyn.
|
P. W. Kasteleyn.
|
||||||
% The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
|
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
|
||||||
% \emph{Physica}, 27(12):1209--1225, 1961.
|
\emph{Physica}, 27(12):1209--1225, 1961.
|
||||||
|
|
||||||
\bibitem{knu982}
|
\bibitem{knu982}
|
||||||
D. E. Knuth.
|
D. E. Knuth.
|
||||||
|
@ -335,10 +340,10 @@ pro \emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||||
Finding biconnected componemts and computing tree functions in logarithmic parallel time.
|
Finding biconnected componemts and computing tree functions in logarithmic parallel time.
|
||||||
\emph{25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984.
|
\emph{25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984.
|
||||||
|
|
||||||
% \bibitem{tem61}
|
\bibitem{tem61}
|
||||||
% H. N. V. Temperley and M. E. Fisher.
|
H. N. V. Temperley and M. E. Fisher.
|
||||||
% Dimer problem in statistical mechanics -- an exact result.
|
Dimer problem in statistical mechanics -- an exact result.
|
||||||
% \emph{Philosophical Magazine}, 6(68):1061--1063, 1961.
|
\emph{Philosophical Magazine}, 6(68):1061--1063, 1961.
|
||||||
|
|
||||||
\bibitem{war23}
|
\bibitem{war23}
|
||||||
H. C. von Warnsdorf.
|
H. C. von Warnsdorf.
|
||||||
|
|
Loading…
Reference in New Issue