Add references to the tiling formula
This commit is contained in:
		
							parent
							
								
									a8e456ce15
								
							
						
					
					
						commit
						180fe097e8
					
				|  | @ -987,10 +987,9 @@ $2^m$ distinct rows and the time complexity is | |||
| $O(n 2^{2m})$. | ||||
| 
 | ||||
| As a final note, there is also a surprising direct formula | ||||
| for calculating the number of tilings: | ||||
| % \footnote{Surprisingly, | ||||
| % this formula was discovered independently | ||||
| % by \cite{kas61} and \cite{tem61} in 1961.}: | ||||
| for calculating the number of tilings\footnote{Surprisingly, | ||||
| this formula was discovered in 1961 by two research teams \cite{kas61,tem61} | ||||
| that worked independently.}: | ||||
| \[ \prod_{a=1}^{\lceil n/2 \rceil} \prod_{b=1}^{\lceil m/2 \rceil} 4 \cdot (\cos^2 \frac{\pi a}{n + 1} + \cos^2 \frac{\pi b}{m+1})\] | ||||
| This formula is very efficient, because it calculates | ||||
| the number of tilings in $O(nm)$ time, | ||||
|  |  | |||
							
								
								
									
										23
									
								
								list.tex
								
								
								
								
							
							
						
						
									
										23
									
								
								list.tex
								
								
								
								
							|  | @ -40,10 +40,15 @@ | |||
|   \emph{Programming Pearls}. | ||||
|   Addison-Wesley, 1999 (2nd edition). | ||||
| 
 | ||||
| \bibitem{ben80} | ||||
|   J. Bentley and D. Wood. | ||||
|   An optimal worst case algorithm for reporting intersections of rectangles. | ||||
|   \emph{IEEE Transactions on Computers}, C-29(7):571--577, 1980. | ||||
| 
 | ||||
| \bibitem{bou01} | ||||
|   C. L. Bouton. | ||||
|   Nim, a game with a complete mathematical theory. | ||||
| pro  \emph{Annals of Mathematics}, 3(1/4):35--39, 1901. | ||||
|   \emph{Annals of Mathematics}, 3(1/4):35--39, 1901. | ||||
| 
 | ||||
| % \bibitem{bur97} | ||||
| %   W. Burnside. | ||||
|  | @ -218,10 +223,10 @@ pro  \emph{Annals of Mathematics}, 3(1/4):35--39, 1901. | |||
|   J. Kleinberg and É. Tardos. | ||||
|   \emph{Algorithm Design}, Pearson, 2005. | ||||
| 
 | ||||
| % \bibitem{kas61} | ||||
| %   P. W. Kasteleyn.   | ||||
| %   The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. | ||||
| %   \emph{Physica}, 27(12):1209--1225, 1961. | ||||
| \bibitem{kas61} | ||||
|   P. W. Kasteleyn.   | ||||
|   The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. | ||||
|   \emph{Physica}, 27(12):1209--1225, 1961. | ||||
| 
 | ||||
| \bibitem{knu982} | ||||
|   D. E. Knuth. | ||||
|  | @ -335,10 +340,10 @@ pro  \emph{Annals of Mathematics}, 3(1/4):35--39, 1901. | |||
|   Finding biconnected componemts and computing tree functions in logarithmic parallel time. | ||||
|   \emph{25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984. | ||||
| 
 | ||||
| % \bibitem{tem61} | ||||
| %   H. N. V. Temperley and M. E. Fisher. | ||||
| %   Dimer problem in statistical mechanics -- an exact result. | ||||
| %   \emph{Philosophical Magazine}, 6(68):1061--1063, 1961. | ||||
| \bibitem{tem61} | ||||
|   H. N. V. Temperley and M. E. Fisher. | ||||
|   Dimer problem in statistical mechanics -- an exact result. | ||||
|   \emph{Philosophical Magazine}, 6(68):1061--1063, 1961. | ||||
| 
 | ||||
| \bibitem{war23} | ||||
|   H. C. von Warnsdorf. | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue