From 24407fb106082532989407159750674d91cb44fd Mon Sep 17 00:00:00 2001 From: Antti H S Laaksonen Date: Wed, 19 Apr 2017 21:31:36 +0300 Subject: [PATCH] Fix grammar --- chapter20.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/chapter20.tex b/chapter20.tex index 1e7a8d0..a4a089a 100644 --- a/chapter20.tex +++ b/chapter20.tex @@ -947,7 +947,7 @@ that contains all left nodes exists exactly when for each $X$, the condition $|X| \le |f(X)|$ holds. Let us study Hall's theorem in the example graph. -First, let $X=\{1,3\}$ and $f(X)=\{5,6,8\}$: +First, let $X=\{1,3\}$ which yields $f(X)=\{5,6,8\}$: \begin{center} \begin{tikzpicture}[scale=0.60] @@ -971,7 +971,7 @@ First, let $X=\{1,3\}$ and $f(X)=\{5,6,8\}$: The condition of Hall's theorem holds, because $|X|=2$ and $|f(X)|=3$. -Next, let $X=\{2,4\}$ and $f(X)=\{7\}$: +Next, let $X=\{2,4\}$ which yields $f(X)=\{7\}$: \begin{center} \begin{tikzpicture}[scale=0.60]