Some fixes
This commit is contained in:
parent
8a936ed246
commit
25c948597e
|
@ -205,7 +205,9 @@ so the result of the function is $[2,2,2,3]$.
|
|||
|
||||
\index{sieve of Eratosthenes}
|
||||
|
||||
The \key{sieve of Eratosthenes}\footnote{Eratosthenes (c. 276 BC -- c. 194 BC) was a Greek mathematician.} is a preprocessing
|
||||
The \key{sieve of Eratosthenes}
|
||||
%\footnote{Eratosthenes (c. 276 BC -- c. 194 BC) was a Greek mathematician.}
|
||||
is a preprocessing
|
||||
algorithm that builds an array using which we
|
||||
can efficiently check if a given number between $2 \ldots n$
|
||||
is prime and, if it is not, find one prime factor of the number.
|
||||
|
@ -355,8 +357,8 @@ For example,
|
|||
|
||||
Numbers $a$ and $b$ are \key{coprime}
|
||||
if $\textrm{gcd}(a,b)=1$.
|
||||
\key{Euler's totient function} $\varphi(n)$\footnote{Euler
|
||||
presented this function in 1763.}
|
||||
\key{Euler's totient function} $\varphi(n)$
|
||||
%\footnote{Euler presented this function in 1763.}
|
||||
gives the number of coprime numbers to $n$
|
||||
between $1$ and $n$.
|
||||
For example, $\varphi(12)=4$,
|
||||
|
@ -434,12 +436,16 @@ int modpow(int x, int n, int m) {
|
|||
\index{Fermat's theorem}
|
||||
\index{Euler's theorem}
|
||||
|
||||
\key{Fermat's theorem}\footnote{Fermat discovered this theorem in 1640.} states that
|
||||
\key{Fermat's theorem}
|
||||
%\footnote{Fermat discovered this theorem in 1640.}
|
||||
states that
|
||||
\[x^{m-1} \bmod m = 1\]
|
||||
when $m$ is prime and $x$ and $m$ are coprime.
|
||||
This also yields
|
||||
\[x^k \bmod m = x^{k \bmod (m-1)} \bmod m.\]
|
||||
More generally, \key{Euler's theorem}\footnote{Euler published this theorem in 1763.} states that
|
||||
More generally, \key{Euler's theorem}
|
||||
%\footnote{Euler published this theorem in 1763.}
|
||||
states that
|
||||
\[x^{\varphi(m)} \bmod m = 1\]
|
||||
when $x$ and $m$ are coprime.
|
||||
Fermat's theorem follows from Euler's theorem,
|
||||
|
@ -519,8 +525,9 @@ cout << x*x << "\n"; // 2537071545
|
|||
|
||||
\index{Diophantine equation}
|
||||
|
||||
A \key{Diophantine equation}\footnote{Diophantus of Alexandria was a Greek
|
||||
mathematician who lived in the 3th century.} is an equation of the form
|
||||
A \key{Diophantine equation}
|
||||
%\footnote{Diophantus of Alexandria was a Greek mathematician who lived in the 3th century.}
|
||||
is an equation of the form
|
||||
\[ ax + by = c, \]
|
||||
where $a$, $b$ and $c$ are constants
|
||||
and we should find the values of $x$ and $y$.
|
||||
|
@ -640,7 +647,9 @@ are solutions.
|
|||
|
||||
\index{Lagrange's theorem}
|
||||
|
||||
\key{Lagrange's theorem}\footnote{J.-L. Lagrange (1736--1813) was an Italian mathematician.} states that every positive integer
|
||||
\key{Lagrange's theorem}
|
||||
%\footnote{J.-L. Lagrange (1736--1813) was an Italian mathematician.}
|
||||
states that every positive integer
|
||||
can be represented as a sum of four squares, i.e.,
|
||||
$a^2+b^2+c^2+d^2$.
|
||||
For example, the number 123 can be represented
|
||||
|
@ -651,8 +660,9 @@ as the sum $8^2+5^2+5^2+3^2$.
|
|||
\index{Zeckendorf's theorem}
|
||||
\index{Fibonacci number}
|
||||
|
||||
\key{Zeckendorf's theorem}\footnote{E. Zeckendorf published the theorem in 1972 \cite{zec72};
|
||||
however, this was not a new result.} states that every
|
||||
\key{Zeckendorf's theorem}
|
||||
%\footnote{E. Zeckendorf published the theorem in 1972 \cite{zec72}; however, this was not a new result.}
|
||||
states that every
|
||||
positive integer has a unique representation
|
||||
as a sum of Fibonacci numbers such that
|
||||
no two numbers are equal or consecutive
|
||||
|
@ -693,7 +703,9 @@ produces the smallest Pythagorean triple
|
|||
|
||||
\index{Wilson's theorem}
|
||||
|
||||
\key{Wilson's theorem}\footnote{J. Wilson (1741--1793) was an English mathematician.} states that a number $n$
|
||||
\key{Wilson's theorem}
|
||||
%\footnote{J. Wilson (1741--1793) was an English mathematician.}
|
||||
states that a number $n$
|
||||
is prime exactly when
|
||||
\[(n-1)! \bmod n = n-1.\]
|
||||
For example, the number 11 is prime, because
|
||||
|
|
|
@ -342,8 +342,9 @@ corresponds to the binomial coefficient formula.
|
|||
|
||||
\index{Catalan number}
|
||||
|
||||
The \key{Catalan number}\footnote{E. C. Catalan (1814--1894)
|
||||
was a Belgian mathematician.} $C_n$ equals the
|
||||
The \key{Catalan number}
|
||||
%\footnote{E. C. Catalan (1814--1894) was a Belgian mathematician.}
|
||||
$C_n$ equals the
|
||||
number of valid
|
||||
parenthesis expressions that consist of
|
||||
$n$ left parentheses and $n$ right parentheses.
|
||||
|
@ -679,8 +680,9 @@ elements should be changed.
|
|||
|
||||
\index{Burnside's lemma}
|
||||
|
||||
\key{Burnside's lemma}\footnote{Actually, Burnside did not discover this lemma;
|
||||
he only mentioned it in his book \cite{bur97}.} can be used to count
|
||||
\key{Burnside's lemma}
|
||||
%\footnote{Actually, Burnside did not discover this lemma; he only mentioned it in his book \cite{bur97}.}
|
||||
can be used to count
|
||||
the number of combinations so that
|
||||
only one representative is counted
|
||||
for each group of symmetric combinations.
|
||||
|
@ -766,10 +768,10 @@ with 3 colors is
|
|||
|
||||
\index{Cayley's formula}
|
||||
|
||||
\key{Cayley's formula}\footnote{While the formula
|
||||
is named after A. Cayley,
|
||||
who studied it in 1889,
|
||||
it was discovered earlier by C. W. Borchardt in 1860.} states that
|
||||
\key{Cayley's formula}
|
||||
% \footnote{While the formula is named after A. Cayley,
|
||||
% who studied it in 1889, it was discovered earlier by C. W. Borchardt in 1860.}
|
||||
states that
|
||||
there are $n^{n-2}$ labeled trees
|
||||
that contain $n$ nodes.
|
||||
The nodes are labeled $1,2,\ldots,n$,
|
||||
|
@ -832,8 +834,9 @@ be derived using Prüfer codes.
|
|||
|
||||
\index{Prüfer code}
|
||||
|
||||
A \key{Prüfer code}\footnote{In 1918, H. Prüfer proved
|
||||
Cayley's theorem using Prüfer codes \cite{pru18}.} is a sequence of
|
||||
A \key{Prüfer code}
|
||||
%\footnote{In 1918, H. Prüfer proved Cayley's theorem using Prüfer codes \cite{pru18}.}
|
||||
is a sequence of
|
||||
$n-2$ numbers that describes a labeled tree.
|
||||
The code is constructed by following a process
|
||||
that removes $n-2$ leaves from the tree.
|
||||
|
|
|
@ -14,7 +14,7 @@ and our task is to calculate its area.
|
|||
For example, a possible input for the problem is as follows:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.44]
|
||||
\begin{tikzpicture}[scale=0.45]
|
||||
|
||||
\draw[fill] (6,2) circle [radius=0.1];
|
||||
\draw[fill] (5,6) circle [radius=0.1];
|
||||
|
@ -27,7 +27,7 @@ One way to approach the problem is to divide
|
|||
the quadrilateral into two triangles by a straight
|
||||
line between two opposite vertices:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.44]
|
||||
\begin{tikzpicture}[scale=0.45]
|
||||
|
||||
\draw[fill] (6,2) circle [radius=0.1];
|
||||
\draw[fill] (5,6) circle [radius=0.1];
|
||||
|
@ -41,8 +41,8 @@ line between two opposite vertices:
|
|||
After this, it suffices to sum the areas
|
||||
of the triangles.
|
||||
The area of a triangle can be calculated,
|
||||
for example, using \key{Heron's formula}\footnote{Heron of Alexandria
|
||||
(c. 10--70) was a Greek mathematician.}
|
||||
for example, using \key{Heron's formula}
|
||||
%\footnote{Heron of Alexandria (c. 10--70) was a Greek mathematician.}
|
||||
\[ \sqrt{s (s-a) (s-b) (s-c)},\]
|
||||
where $a$, $b$ and $c$ are the lengths
|
||||
of the triangle's sides and
|
||||
|
@ -57,7 +57,7 @@ two arbitrary opposite vertices.
|
|||
For example, in the following situation,
|
||||
the division line is outside the quadrilateral:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.44]
|
||||
\begin{tikzpicture}[scale=0.45]
|
||||
|
||||
\draw[fill] (6,2) circle [radius=0.1];
|
||||
\draw[fill] (3,2) circle [radius=0.1];
|
||||
|
@ -70,7 +70,7 @@ the division line is outside the quadrilateral:
|
|||
\end{center}
|
||||
However, another way to draw the line works:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.44]
|
||||
\begin{tikzpicture}[scale=0.45]
|
||||
|
||||
\draw[fill] (6,2) circle [radius=0.1];
|
||||
\draw[fill] (3,2) circle [radius=0.1];
|
||||
|
@ -573,7 +573,7 @@ along the boundary of the polygon.
|
|||
|
||||
\index{Pick's theorem}
|
||||
|
||||
\key{Pick's theorem} \cite{pic99} provides another way to calculate
|
||||
\key{Pick's theorem} provides another way to calculate
|
||||
the area of a polygon provided that all vertices
|
||||
of the polygon have integer coordinates.
|
||||
According to Pick's theorem, the area of the polygon is
|
||||
|
|
34
list.tex
34
list.tex
|
@ -45,10 +45,10 @@
|
|||
Nim, a game with a complete mathematical theory.
|
||||
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||
|
||||
\bibitem{bur97}
|
||||
W. Burnside.
|
||||
\emph{Theory of Groups of Finite Order},
|
||||
Cambridge University Press, 1897.
|
||||
% \bibitem{bur97}
|
||||
% W. Burnside.
|
||||
% \emph{Theory of Groups of Finite Order},
|
||||
% Cambridge University Press, 1897.
|
||||
|
||||
\bibitem{cod15}
|
||||
Codeforces: On ''Mo's algorithm'',
|
||||
|
@ -241,21 +241,21 @@
|
|||
Where to use and how not to use polynomial string hashing.
|
||||
\emph{Olympiads in Informatics}, 7(1):90--100, 2013.
|
||||
|
||||
\bibitem{pic99}
|
||||
G. Pick.
|
||||
Geometrisches zur Zahlenlehre.
|
||||
\emph{Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines
|
||||
für Böhmen "Lotos" in Prag. (Neue Folge)}, 19:311--319, 1899.
|
||||
% \bibitem{pic99}
|
||||
% G. Pick.
|
||||
% Geometrisches zur Zahlenlehre.
|
||||
% \emph{Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines
|
||||
% für Böhmen "Lotos" in Prag. (Neue Folge)}, 19:311--319, 1899.
|
||||
|
||||
\bibitem{pri57}
|
||||
R. C. Prim.
|
||||
Shortest connection networks and some generalizations.
|
||||
\emph{Bell System Technical Journal}, 36(6):1389--1401, 1957.
|
||||
|
||||
\bibitem{pru18}
|
||||
H. Prüfer.
|
||||
Neuer Beweis eines Satzes über Permutationen.
|
||||
\emph{Arch. Math. Phys}, 27:742--744, 1918.
|
||||
% \bibitem{pru18}
|
||||
% H. Prüfer.
|
||||
% Neuer Beweis eines Satzes über Permutationen.
|
||||
% \emph{Arch. Math. Phys}, 27:742--744, 1918.
|
||||
|
||||
\bibitem{q27}
|
||||
27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
|
||||
|
@ -306,9 +306,9 @@
|
|||
\emph{Des Rösselsprunges einfachste und allgemeinste Lösung}.
|
||||
Schmalkalden, 1823.
|
||||
|
||||
\bibitem{zec72}
|
||||
E. Zeckendorf.
|
||||
Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.
|
||||
\emph{Bull. Soc. Roy. Sci. Liege}, 41:179--182, 1972.
|
||||
% \bibitem{zec72}
|
||||
% E. Zeckendorf.
|
||||
% Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.
|
||||
% \emph{Bull. Soc. Roy. Sci. Liege}, 41:179--182, 1972.
|
||||
|
||||
\end{thebibliography}
|
Loading…
Reference in New Issue