Use 0-indexing with C++ arrays
This commit is contained in:
parent
11564fd4d3
commit
35d53d39d4
|
@ -354,12 +354,12 @@ However, by designing a better algorithm, it
|
|||
is possible to solve the problem in $O(n^2)$
|
||||
time and even in $O(n)$ time.
|
||||
|
||||
Given an array of $n$ integers $x_1,x_2,\ldots,x_n$,
|
||||
our task is to find the
|
||||
\key{maximum subarray sum}\footnote{J. Bentley's
|
||||
book \emph{Programming Pearls} \cite{ben86} made the problem popular.}, i.e.,
|
||||
Given an array of $n$ numbers,
|
||||
our task is to calculate the
|
||||
\key{maximum subarray sum}, i.e.,
|
||||
the largest possible sum of numbers
|
||||
in a contiguous region in the array.
|
||||
in a contiguous region in the array\footnote{J. Bentley's
|
||||
book \emph{Programming Pearls} \cite{ben86} made the problem popular.}.
|
||||
The problem is interesting when there may be
|
||||
negative numbers in the array.
|
||||
For example, in the array
|
||||
|
@ -375,16 +375,6 @@ For example, in the array
|
|||
\node at (5.5,0.5) {$2$};
|
||||
\node at (6.5,0.5) {$-5$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\begin{samepage}
|
||||
|
@ -402,23 +392,15 @@ the following subarray produces the maximum sum $10$:
|
|||
\node at (5.5,0.5) {$2$};
|
||||
\node at (6.5,0.5) {$-5$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{samepage}
|
||||
|
||||
\subsubsection{Algorithm 1}
|
||||
|
||||
A straightforward algorithm to solve the problem
|
||||
Let us assume that the numbers are stored in
|
||||
an array \texttt{x}.
|
||||
A straightforward way to solve the problem
|
||||
is to go through all possible ways of
|
||||
selecting a subarray, calculate the sum of
|
||||
the numbers in each subarray and maintain
|
||||
|
@ -427,8 +409,8 @@ The following code implements this algorithm:
|
|||
|
||||
\begin{lstlisting}
|
||||
int p = 0;
|
||||
for (int a = 1; a <= n; a++) {
|
||||
for (int b = a; b <= n; b++) {
|
||||
for (int a = 0; a < n; a++) {
|
||||
for (int b = a; b < n; b++) {
|
||||
int s = 0;
|
||||
for (int c = a; c <= b; c++) {
|
||||
s += x[c];
|
||||
|
@ -439,8 +421,6 @@ for (int a = 1; a <= n; a++) {
|
|||
cout << p << "\n";
|
||||
\end{lstlisting}
|
||||
|
||||
The code assumes that the numbers are stored in an array \texttt{x}
|
||||
with indices $1 \ldots n$.
|
||||
The variables $a$ and $b$ determine the first and last
|
||||
number in the subarray,
|
||||
and the sum of the numbers is calculated to the variable $s$.
|
||||
|
@ -460,9 +440,9 @@ The result is the following code:
|
|||
|
||||
\begin{lstlisting}
|
||||
int p = 0;
|
||||
for (int a = 1; a <= n; a++) {
|
||||
for (int a = 0; a < n; a++) {
|
||||
int s = 0;
|
||||
for (int b = a; b <= n; b++) {
|
||||
for (int b = a; b < n; b++) {
|
||||
s += x[b];
|
||||
p = max(p,s);
|
||||
}
|
||||
|
@ -502,7 +482,7 @@ for each ending position from left to right.
|
|||
The following code implements the algorithm:
|
||||
\begin{lstlisting}
|
||||
int p = 0, s = 0;
|
||||
for (int k = 1; k <= n; k++) {
|
||||
for (int k = 0; k < n; k++) {
|
||||
s = max(x[k],s+x[k]);
|
||||
p = max(p,s);
|
||||
}
|
||||
|
|
279
chapter03.tex
279
chapter03.tex
|
@ -49,15 +49,15 @@ For example, the array
|
|||
\node at (6.5,0.5) {$5$};
|
||||
\node at (7.5,0.5) {$6$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
will be as follows after sorting:
|
||||
|
@ -73,15 +73,15 @@ will be as follows after sorting:
|
|||
\node at (6.5,0.5) {$8$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -97,18 +97,17 @@ A famous $O(n^2)$ time sorting algorithm
|
|||
is \key{bubble sort} where the elements
|
||||
''bubble'' in the array according to their values.
|
||||
|
||||
Bubble sort consists of $n-1$ rounds.
|
||||
Bubble sort consists of $n$ rounds.
|
||||
On each round, the algorithm iterates through
|
||||
the elements of the array.
|
||||
Whenever two consecutive elements are found
|
||||
that are not in correct order,
|
||||
the algorithm swaps them.
|
||||
The algorithm can be implemented as follows
|
||||
for an array
|
||||
$\texttt{t}[1],\texttt{t}[2],\ldots,\texttt{t}[n]$:
|
||||
for an array \texttt{x}:
|
||||
\begin{lstlisting}
|
||||
for (int i = 1; i <= n-1; i++) {
|
||||
for (int j = 1; j <= n-i; j++) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n-1; j++) {
|
||||
if (t[j] > t[j+1]) swap(t[j],t[j+1]);
|
||||
}
|
||||
}
|
||||
|
@ -118,7 +117,7 @@ After the first round of the algorithm,
|
|||
the largest element will be in the correct position,
|
||||
and in general, after $k$ rounds, the $k$ largest
|
||||
elements will be in the correct positions.
|
||||
Thus, after $n-1$ rounds, the whole array
|
||||
Thus, after $n$ rounds, the whole array
|
||||
will be sorted.
|
||||
|
||||
For example, in the array
|
||||
|
@ -135,16 +134,16 @@ For example, in the array
|
|||
\node at (5.5,0.5) {$2$};
|
||||
\node at (6.5,0.5) {$5$};
|
||||
\node at (7.5,0.5) {$6$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -165,16 +164,16 @@ as follows:
|
|||
\node at (7.5,0.5) {$6$};
|
||||
|
||||
\draw[thick,<->] (3.5,-0.25) .. controls (3.25,-1.00) and (2.75,-1.00) .. (2.5,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -191,17 +190,16 @@ as follows:
|
|||
\node at (7.5,0.5) {$6$};
|
||||
|
||||
\draw[thick,<->] (5.5,-0.25) .. controls (5.25,-1.00) and (4.75,-1.00) .. (4.5,-0.25);
|
||||
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -218,17 +216,16 @@ as follows:
|
|||
\node at (7.5,0.5) {$6$};
|
||||
|
||||
\draw[thick,<->] (6.5,-0.25) .. controls (6.25,-1.00) and (5.75,-1.00) .. (5.5,-0.25);
|
||||
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -245,16 +242,16 @@ as follows:
|
|||
\node at (7.5,0.5) {$9$};
|
||||
|
||||
\draw[thick,<->] (7.5,-0.25) .. controls (7.25,-1.00) and (6.75,-1.00) .. (6.5,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -289,16 +286,16 @@ For example, in the array
|
|||
\node at (5.5,0.5) {$5$};
|
||||
\node at (6.5,0.5) {$9$};
|
||||
\node at (7.5,0.5) {$8$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
the inversions are $(6,3)$, $(6,5)$ and $(9,8)$.
|
||||
|
@ -360,16 +357,16 @@ For example, consider sorting the following array:
|
|||
\node at (5.5,0.5) {$2$};
|
||||
\node at (6.5,0.5) {$5$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -389,16 +386,16 @@ as follows:
|
|||
\node at (6.5,0.5) {$2$};
|
||||
\node at (7.5,0.5) {$5$};
|
||||
\node at (8.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\node at (8.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (5.5,1.4) {$5$};
|
||||
% \node at (6.5,1.4) {$6$};
|
||||
% \node at (7.5,1.4) {$7$};
|
||||
% \node at (8.5,1.4) {$8$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
@ -419,16 +416,16 @@ as follows:
|
|||
\node at (6.5,0.5) {$5$};
|
||||
\node at (7.5,0.5) {$8$};
|
||||
\node at (8.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\node at (8.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (5.5,1.4) {$5$};
|
||||
% \node at (6.5,1.4) {$6$};
|
||||
% \node at (7.5,1.4) {$7$};
|
||||
% \node at (8.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -445,16 +442,16 @@ subarrays and creates the final sorted array:
|
|||
\node at (5.5,0.5) {$6$};
|
||||
\node at (6.5,0.5) {$8$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -546,6 +543,7 @@ whose indices are elements in the original array.
|
|||
The algorithm iterates through the original array
|
||||
and calculates how many times each element
|
||||
appears in the array.
|
||||
\newpage
|
||||
|
||||
For example, the array
|
||||
\begin{center}
|
||||
|
@ -559,16 +557,16 @@ For example, the array
|
|||
\node at (5.5,0.5) {$3$};
|
||||
\node at (6.5,0.5) {$5$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
corresponds to the following bookkeeping array:
|
||||
|
@ -658,6 +656,7 @@ int n = 7; // array size
|
|||
int t[] = {4,2,5,3,5,8,3};
|
||||
sort(t,t+n);
|
||||
\end{lstlisting}
|
||||
\newpage
|
||||
The following code sorts the string \texttt{s}:
|
||||
\begin{lstlisting}
|
||||
string s = "monkey";
|
||||
|
@ -776,7 +775,7 @@ For example, the following code searches for
|
|||
an element $x$ in the array \texttt{t}:
|
||||
|
||||
\begin{lstlisting}
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (t[i] == x) {} // x found at index i
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
@ -815,7 +814,7 @@ depending on the value of the middle element.
|
|||
|
||||
The above idea can be implemented as follows:
|
||||
\begin{lstlisting}
|
||||
int a = 1, b = n;
|
||||
int a = 0, b = n-1;
|
||||
while (a <= b) {
|
||||
int k = (a+b)/2;
|
||||
if (t[k] == x) {} // x found at index k
|
||||
|
@ -848,9 +847,9 @@ been found or we know that it does not appear in the array.
|
|||
|
||||
The following code implements the above idea:
|
||||
\begin{lstlisting}
|
||||
int k = 1;
|
||||
int k = 0;
|
||||
for (int b = n/2; b >= 1; b /= 2) {
|
||||
while (k+b <= n && t[k+b] <= x) k += b;
|
||||
while (k+b < n && t[k+b] <= x) k += b;
|
||||
}
|
||||
if (t[k] == x) {} // x was found at index k
|
||||
\end{lstlisting}
|
||||
|
|
124
chapter05.tex
124
chapter05.tex
|
@ -22,9 +22,9 @@ dynamic programming, may be needed.
|
|||
|
||||
We first consider the problem of generating
|
||||
all subsets of a set of $n$ elements.
|
||||
For example, the subsets of $\{1,2,3\}$ are
|
||||
$\emptyset$, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$,
|
||||
$\{1,3\}$, $\{2,3\}$ and $\{1,2,3\}$.
|
||||
For example, the subsets of $\{0,1,2\}$ are
|
||||
$\emptyset$, $\{0\}$, $\{1\}$, $\{2\}$, $\{0,1\}$,
|
||||
$\{0,2\}$, $\{1,2\}$ and $\{0,1,2\}$.
|
||||
There are two common methods for this:
|
||||
we can either implement a recursive search
|
||||
or use bit operations of integers.
|
||||
|
@ -35,21 +35,21 @@ An elegant way to go through all subsets
|
|||
of a set is to use recursion.
|
||||
The following function
|
||||
generates the subsets of the set
|
||||
$\{1,2,\ldots,n\}$.
|
||||
The function maintains a vector \texttt{v}
|
||||
$\{0,1,\ldots,n-1\}$.
|
||||
The function maintains a vector \texttt{subset}
|
||||
that will contain the elements of each subset.
|
||||
The search begins when the function is called
|
||||
with parameter 1.
|
||||
with parameter 0.
|
||||
|
||||
\begin{lstlisting}
|
||||
void gen(int k) {
|
||||
if (k == n+1) {
|
||||
// process subset v
|
||||
if (k == n) {
|
||||
// process subset
|
||||
} else {
|
||||
gen(k+1);
|
||||
v.push_back(k);
|
||||
subset.push_back(k);
|
||||
gen(k+1);
|
||||
v.pop_back();
|
||||
subset.pop_back();
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
@ -59,7 +59,7 @@ candidate to be included in the subset.
|
|||
The function considers two cases that both
|
||||
generate a recursive call:
|
||||
either $k$ is included or not included in the subset.
|
||||
Finally, when $k=n+1$, all elements have been processed
|
||||
Finally, when $k=n$, all elements have been processed
|
||||
and one subset has been generated.
|
||||
|
||||
The following tree illustrates how the function is
|
||||
|
@ -72,41 +72,41 @@ We can always choose either the left branch
|
|||
\begin{tikzpicture}[scale=.45]
|
||||
\begin{scope}
|
||||
\small
|
||||
\node at (0,0) {$\texttt{gen}(1)$};
|
||||
\node at (0,0) {$\texttt{gen}(0)$};
|
||||
|
||||
\node at (-8,-4) {$\texttt{gen}(2)$};
|
||||
\node at (8,-4) {$\texttt{gen}(2)$};
|
||||
\node at (-8,-4) {$\texttt{gen}(1)$};
|
||||
\node at (8,-4) {$\texttt{gen}(1)$};
|
||||
|
||||
\path[draw,thick,->] (0,0-0.5) -- (-8,-4+0.5);
|
||||
\path[draw,thick,->] (0,0-0.5) -- (8,-4+0.5);
|
||||
|
||||
\node at (-12,-8) {$\texttt{gen}(3)$};
|
||||
\node at (-4,-8) {$\texttt{gen}(3)$};
|
||||
\node at (4,-8) {$\texttt{gen}(3)$};
|
||||
\node at (12,-8) {$\texttt{gen}(3)$};
|
||||
\node at (-12,-8) {$\texttt{gen}(2)$};
|
||||
\node at (-4,-8) {$\texttt{gen}(2)$};
|
||||
\node at (4,-8) {$\texttt{gen}(2)$};
|
||||
\node at (12,-8) {$\texttt{gen}(2)$};
|
||||
|
||||
\path[draw,thick,->] (-8,-4-0.5) -- (-12,-8+0.5);
|
||||
\path[draw,thick,->] (-8,-4-0.5) -- (-4,-8+0.5);
|
||||
\path[draw,thick,->] (8,-4-0.5) -- (4,-8+0.5);
|
||||
\path[draw,thick,->] (8,-4-0.5) -- (12,-8+0.5);
|
||||
|
||||
\node at (-14,-12) {$\texttt{gen}(4)$};
|
||||
\node at (-10,-12) {$\texttt{gen}(4)$};
|
||||
\node at (-6,-12) {$\texttt{gen}(4)$};
|
||||
\node at (-2,-12) {$\texttt{gen}(4)$};
|
||||
\node at (2,-12) {$\texttt{gen}(4)$};
|
||||
\node at (6,-12) {$\texttt{gen}(4)$};
|
||||
\node at (10,-12) {$\texttt{gen}(4)$};
|
||||
\node at (14,-12) {$\texttt{gen}(4)$};
|
||||
\node at (-14,-12) {$\texttt{gen}(3)$};
|
||||
\node at (-10,-12) {$\texttt{gen}(3)$};
|
||||
\node at (-6,-12) {$\texttt{gen}(3)$};
|
||||
\node at (-2,-12) {$\texttt{gen}(3)$};
|
||||
\node at (2,-12) {$\texttt{gen}(3)$};
|
||||
\node at (6,-12) {$\texttt{gen}(3)$};
|
||||
\node at (10,-12) {$\texttt{gen}(3)$};
|
||||
\node at (14,-12) {$\texttt{gen}(3)$};
|
||||
|
||||
\node at (-14,-13.5) {$\emptyset$};
|
||||
\node at (-10,-13.5) {$\{3\}$};
|
||||
\node at (-6,-13.5) {$\{2\}$};
|
||||
\node at (-2,-13.5) {$\{2,3\}$};
|
||||
\node at (2,-13.5) {$\{1\}$};
|
||||
\node at (6,-13.5) {$\{1,3\}$};
|
||||
\node at (10,-13.5) {$\{1,2\}$};
|
||||
\node at (14,-13.5) {$\{1,2,3\}$};
|
||||
\node at (-10,-13.5) {$\{2\}$};
|
||||
\node at (-6,-13.5) {$\{1\}$};
|
||||
\node at (-2,-13.5) {$\{1,2\}$};
|
||||
\node at (2,-13.5) {$\{0\}$};
|
||||
\node at (6,-13.5) {$\{0,2\}$};
|
||||
\node at (10,-13.5) {$\{0,1\}$};
|
||||
\node at (14,-13.5) {$\{0,1,2\}$};
|
||||
|
||||
|
||||
\path[draw,thick,->] (-12,-8-0.5) -- (-14,-12+0.5);
|
||||
|
@ -135,14 +135,14 @@ The usual convention is that the $k$th element
|
|||
is included in the subset exactly when the $k$th last bit
|
||||
in the sequence is one.
|
||||
For example, the bit representation of 25
|
||||
is 11001, that corresponds to the subset $\{1,4,5\}$.
|
||||
is 11001, that corresponds to the subset $\{0,3,4\}$.
|
||||
|
||||
The following code goes through all subsets
|
||||
of a set of $n$ elements
|
||||
|
||||
\begin{lstlisting}
|
||||
for (int b = 0; b < (1<<n); b++) {
|
||||
// process subset b
|
||||
// process subset
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
||||
|
@ -154,9 +154,9 @@ elements in the subset.
|
|||
|
||||
\begin{lstlisting}
|
||||
for (int b = 0; b < (1<<n); b++) {
|
||||
vector<int> v;
|
||||
vector<int> subset;
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (b&(1<<i)) v.push_back(i+1);
|
||||
if (b&(1<<i)) subset.push_back(i);
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
@ -167,9 +167,9 @@ for (int b = 0; b < (1<<n); b++) {
|
|||
|
||||
Next we will consider the problem of generating
|
||||
all permutations of a set of $n$ elements.
|
||||
For example, the permutations of $\{1,2,3\}$ are
|
||||
$(1,2,3)$, $(1,3,2)$, $(2,1,3)$, $(2,3,1)$,
|
||||
$(3,1,2)$ and $(3,2,1)$.
|
||||
For example, the permutations of $\{0,1,2\}$ are
|
||||
$(0,1,2)$, $(0,2,1)$, $(1,0,2)$, $(1,2,0)$,
|
||||
$(2,0,1)$ and $(2,1,0)$.
|
||||
Again, there are two approaches:
|
||||
we can either use recursion or go through the
|
||||
permutations iteratively.
|
||||
|
@ -179,36 +179,34 @@ permutations iteratively.
|
|||
Like subsets, permutations can be generated
|
||||
using recursion.
|
||||
The following function goes
|
||||
through the permutations of the set $\{1,2,\ldots,n\}$.
|
||||
The function builds a vector \texttt{v} that contains
|
||||
through the permutations of the set $\{0,1,\ldots,n-1\}$.
|
||||
The function builds a vector \texttt{perm} that contains
|
||||
the elements in the permutation,
|
||||
and the search begins when the function is
|
||||
called without parameters.
|
||||
|
||||
\begin{lstlisting}
|
||||
void gen() {
|
||||
if (v.size() == n) {
|
||||
// process permutation v
|
||||
if (perm.size() == n) {
|
||||
// process permutation
|
||||
} else {
|
||||
for (int i = 1; i <= n; i++) {
|
||||
if (p[i]) continue;
|
||||
p[i] = 1;
|
||||
v.push_back(i);
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (chosen[i]) continue;
|
||||
chosen[i] = true;
|
||||
perm.push_back(i);
|
||||
gen();
|
||||
p[i] = 0;
|
||||
v.pop_back();
|
||||
chosen[i] = false;
|
||||
perm.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
||||
Each function call adds a new element to
|
||||
the vector \texttt{v}.
|
||||
The array \texttt{p} indicates which
|
||||
elements are already included in the permutation:
|
||||
if $\texttt{p}[k]=0$, element $k$ is not included,
|
||||
and if $\texttt{p}[k]=1$, element $k$ is included.
|
||||
If the size of \texttt{v} equals the size of the set,
|
||||
the vector \texttt{perm}.
|
||||
The array \texttt{chosen} indicates which
|
||||
elements are already included in the permutation.
|
||||
If the size of \texttt{perm} equals the size of the set,
|
||||
a permutation has been generated.
|
||||
|
||||
\subsubsection{Method 2}
|
||||
|
@ -224,13 +222,13 @@ The C++ standard library contains the function
|
|||
\texttt{next\_permutation} that can be used for this:
|
||||
|
||||
\begin{lstlisting}
|
||||
vector<int> v;
|
||||
for (int i = 1; i <= n; i++) {
|
||||
v.push_back(i);
|
||||
vector<int> perm;
|
||||
for (int i = 0; i < n; i++) {
|
||||
perm.push_back(i);
|
||||
}
|
||||
do {
|
||||
// process permutation v
|
||||
} while (next_permutation(v.begin(),v.end()));
|
||||
// process permutation
|
||||
} while (next_permutation(perm.begin(),perm.end()));
|
||||
\end{lstlisting}
|
||||
|
||||
\section{Backtracking}
|
||||
|
@ -344,7 +342,7 @@ The following code implements the search:
|
|||
\begin{lstlisting}
|
||||
void search(int y) {
|
||||
if (y == n) {
|
||||
c++;
|
||||
count++;
|
||||
return;
|
||||
}
|
||||
for (int x = 0; x < n; x++) {
|
||||
|
@ -359,7 +357,7 @@ void search(int y) {
|
|||
The search begins by calling \texttt{search(0)}.
|
||||
The size of the board is $n$,
|
||||
and the code calculates the number of solutions
|
||||
to $c$.
|
||||
to \texttt{count}.
|
||||
|
||||
The code assumes that the rows and columns
|
||||
of the board are numbered from 0.
|
||||
|
|
|
@ -122,7 +122,7 @@ Thus, the recursive formula is
|
|||
where the function $\min$ gives the smallest
|
||||
of its parameters.
|
||||
In the general case, for the coin set
|
||||
$\{c_1,c_2,\ldots,c_k\}$,
|
||||
$\{c_0,c_1,\ldots,c_{k-1}\}$,
|
||||
the recursive formula is
|
||||
\[f(x) = \min(f(x-c_1),f(x-c_2),\ldots,f(x-c_k))+1.\]
|
||||
The base case for the function is
|
||||
|
@ -153,7 +153,7 @@ int f(int x) {
|
|||
\end{lstlisting}
|
||||
|
||||
The code assumes that the available coins are
|
||||
$\texttt{c}[1], \texttt{c}[2], \ldots, \texttt{c}[k]$,
|
||||
stored in an array $\texttt{c}$,
|
||||
and the constant \texttt{INF} denotes infinity.
|
||||
This function works but it is not efficient yet,
|
||||
because it goes through a large number
|
||||
|
@ -324,7 +324,7 @@ a sum $x$ using the coins.
|
|||
For example, $f(5)=6$ when the coins are $\{1,3,4\}$.
|
||||
The value of $f(x)$ can be calculated recursively
|
||||
using the formula
|
||||
\[ f(x) = f(x-c_1)+f(x-c_2)+\cdots+f(x-c_k),\]
|
||||
\[ f(x) = f(x-c_1)+f(x-c_2)+\cdots+f(x-c_{k}),\]
|
||||
because to form the sum $x$, we have to first
|
||||
choose some coin $c_i$ and then form the sum $x-c_i$.
|
||||
The base cases are $f(0)=1$, because there is exactly
|
||||
|
@ -393,7 +393,7 @@ possibilities of dynamic programming.
|
|||
\index{longest increasing subsequence}
|
||||
|
||||
Given an array that contains $n$
|
||||
numbers $x_1,x_2,\ldots,x_n$,
|
||||
numbers,
|
||||
our task is to find the
|
||||
\key{longest increasing subsequence}
|
||||
of the array.
|
||||
|
@ -416,14 +416,14 @@ For example, in the array
|
|||
\node at (7.5,0.5) {$3$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
the longest increasing subsequence
|
||||
|
@ -449,14 +449,14 @@ contains 4 elements:
|
|||
\draw[thick,->] (4.6,-0.25) .. controls (5.0,-1.00) and (6.0,-1.00) .. (6.5,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -465,19 +465,19 @@ longest increasing subsequence
|
|||
that ends at position $k$.
|
||||
Using this function, the answer to the problem
|
||||
is the largest of the values
|
||||
$f(1),f(2),\ldots,f(n)$.
|
||||
$f(0),f(1),\ldots,f(n-1)$.
|
||||
For example, in the above array
|
||||
the values of the function are as follows:
|
||||
\[
|
||||
\begin{array}{lcl}
|
||||
f(0) & = & 1 \\
|
||||
f(1) & = & 1 \\
|
||||
f(2) & = & 1 \\
|
||||
f(3) & = & 2 \\
|
||||
f(4) & = & 1 \\
|
||||
f(5) & = & 3 \\
|
||||
f(6) & = & 2 \\
|
||||
f(7) & = & 4 \\
|
||||
f(8) & = & 2 \\
|
||||
f(2) & = & 2 \\
|
||||
f(3) & = & 1 \\
|
||||
f(4) & = & 3 \\
|
||||
f(5) & = & 2 \\
|
||||
f(6) & = & 4 \\
|
||||
f(7) & = & 2 \\
|
||||
\end{array}
|
||||
\]
|
||||
|
||||
|
@ -486,11 +486,12 @@ there are two possibilities how the subsequence
|
|||
that ends at position $k$ is constructed:
|
||||
\begin{enumerate}
|
||||
\item The subsequence
|
||||
only contains the element $x_k$. In this case $f(k)=1$.
|
||||
only contains the element at position $k$. In this case $f(k)=1$.
|
||||
\item The subsequence is constructed
|
||||
by adding the element $x_k$ to
|
||||
by adding the element at position $k$ to
|
||||
a subsequence that ends at position $i$
|
||||
where $i<k$ and $x_i<x_k$. In this case $f(k)=f(i)+1$.
|
||||
where $i<k$ and the element at position $i$
|
||||
is smaller than the element at position $k$. In this case $f(k)=f(i)+1$.
|
||||
\end{enumerate}
|
||||
|
||||
For example, in the above example $f(7)=4$,
|
||||
|
|
400
chapter08.tex
400
chapter08.tex
|
@ -54,16 +54,16 @@ For example, the array
|
|||
\node at (5.5,0.5) {$1$};
|
||||
\node at (6.5,0.5) {$2$};
|
||||
\node at (7.5,0.5) {$3$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
contains a subarray whose sum is 8:
|
||||
|
@ -80,16 +80,16 @@ contains a subarray whose sum is 8:
|
|||
\node at (5.5,0.5) {$1$};
|
||||
\node at (6.5,0.5) {$2$};
|
||||
\node at (7.5,0.5) {$3$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -118,16 +118,16 @@ with target sum $x=8$:
|
|||
\node at (5.5,0.5) {$1$};
|
||||
\node at (6.5,0.5) {$2$};
|
||||
\node at (7.5,0.5) {$3$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -152,16 +152,16 @@ the next element 5 would make the sum larger than $x$.
|
|||
|
||||
\draw[thick,->] (0.5,-0.7) -- (0.5,-0.1);
|
||||
\draw[thick,->] (2.5,-0.7) -- (2.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -185,16 +185,16 @@ the sum would become too large.
|
|||
|
||||
\draw[thick,->] (1.5,-0.7) -- (1.5,-0.1);
|
||||
\draw[thick,->] (2.5,-0.7) -- (2.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -220,16 +220,16 @@ where the sum of the elements is $x$.
|
|||
|
||||
\draw[thick,->] (2.5,-0.7) -- (2.5,-0.1);
|
||||
\draw[thick,->] (4.5,-0.7) -- (4.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -283,16 +283,16 @@ with target sum $x=12$:
|
|||
\node at (5.5,0.5) {$9$};
|
||||
\node at (6.5,0.5) {$9$};
|
||||
\node at (7.5,0.5) {$10$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -318,16 +318,16 @@ that is smaller than $x$.
|
|||
|
||||
\draw[thick,->] (0.5,-0.7) -- (0.5,-0.1);
|
||||
\draw[thick,->] (7.5,-0.7) -- (7.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -352,16 +352,16 @@ and the sum becomes $4+7=11$.
|
|||
|
||||
\draw[thick,->] (1.5,-0.7) -- (1.5,-0.1);
|
||||
\draw[thick,->] (4.5,-0.7) -- (4.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -386,16 +386,16 @@ $5+7=12$ has been found.
|
|||
|
||||
\draw[thick,->] (2.5,-0.7) -- (2.5,-0.1);
|
||||
\draw[thick,->] (4.5,-0.7) -- (4.5,-0.1);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -477,16 +477,16 @@ As an example, consider the following array:
|
|||
\node at (5.5,0.5) {$3$};
|
||||
\node at (6.5,0.5) {$4$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -510,16 +510,16 @@ and the nearest smaller element of 3 is 1.
|
|||
|
||||
\draw[thick,->] (2.5,-0.25) .. controls (2.25,-1.00) and (1.75,-1.00) .. (1.6,-0.25);
|
||||
\draw[thick,->] (1.4,-0.25) .. controls (1.25,-1.00) and (0.75,-1.00) .. (0.5,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -543,16 +543,16 @@ Its nearest smaller element is 1:
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\draw[thick,->] (3.5,-0.25) .. controls (3.00,-1.00) and (1.00,-1.00) .. (0.5,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -575,16 +575,16 @@ its nearest smaller element is 2:
|
|||
|
||||
\draw[thick,->] (3.4,-0.25) .. controls (3.00,-1.00) and (1.00,-1.00) .. (0.5,-0.25);
|
||||
\draw[thick,->] (4.5,-0.25) .. controls (4.25,-1.00) and (3.75,-1.00) .. (3.6,-0.25);
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -651,16 +651,16 @@ As an example, consider the following array:
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -679,16 +679,16 @@ At the first window position, the smallest element is 1:
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
|
||||
\draw[thick,->] (3.5,-0.25) .. controls (3.25,-1.00) and (2.75,-1.00) .. (2.6,-0.25);
|
||||
\draw[thick,->] (2.4,-0.25) .. controls (2.25,-1.00) and (1.75,-1.00) .. (1.5,-0.25);
|
||||
|
@ -715,16 +715,16 @@ The smallest element is still 1.
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
|
||||
\draw[thick,->] (4.5,-0.25) .. controls (4.25,-1.00) and (1.75,-1.00) .. (1.5,-0.25);
|
||||
|
||||
|
@ -750,16 +750,16 @@ is added to the chain.
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
|
||||
\draw[thick,->] (5.5,-0.25) .. controls (5.25,-1.00) and (4.75,-1.00) .. (4.5,-0.25);
|
||||
\end{tikzpicture}
|
||||
|
@ -782,16 +782,16 @@ and it will only contain the element 1:
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
|
||||
\fill[color=black] (6.5,-0.25) circle (0.1);
|
||||
|
||||
|
@ -816,16 +816,16 @@ is still 1.
|
|||
\node at (5.5,0.5) {$4$};
|
||||
\node at (6.5,0.5) {$1$};
|
||||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
|
||||
\draw[thick,->] (7.5,-0.25) .. controls (7.25,-1.00) and (6.75,-1.00) .. (6.5,-0.25);
|
||||
\end{tikzpicture}
|
||||
|
|
207
chapter09.tex
207
chapter09.tex
|
@ -16,7 +16,7 @@ Typical range queries are:
|
|||
\item \key{minimum query}: find the smallest element
|
||||
\item \key{maximum query}: find the largest element
|
||||
\end{itemize}
|
||||
For example, consider the range $[4,7]$ in the following array:
|
||||
For example, consider the range $[3,6]$ in the following array:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.7]
|
||||
\fill[color=lightgray] (3,0) rectangle (7,1);
|
||||
|
@ -32,14 +32,14 @@ For example, consider the range $[4,7]$ in the following array:
|
|||
\node at (7.5,0.5) {$4$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
In this range, the sum of elements is $4+6+1+3=16$,
|
||||
|
@ -105,14 +105,14 @@ For example, consider the following array:
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The corresponding prefix sum array is as follows:
|
||||
|
@ -132,27 +132,27 @@ The corresponding prefix sum array is as follows:
|
|||
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Let $\textrm{sum}(a,b)$ denote the sum of elements
|
||||
in the range $[a,b]$.
|
||||
Since the prefix sum array contains all values
|
||||
of the form $\textrm{sum}(1,k)$,
|
||||
of the form $\textrm{sum}(0,k)$,
|
||||
we can calculate any value of
|
||||
$\textrm{sum}(a,b)$ in $O(1)$ time, because
|
||||
\[ \textrm{sum}(a,b) = \textrm{sum}(1,b) - \textrm{sum}(1,a-1).\]
|
||||
By defining $\textrm{sum}(1,0)=0$,
|
||||
\[ \textrm{sum}(a,b) = \textrm{sum}(0,b) - \textrm{sum}(0,a-1).\]
|
||||
By defining $\textrm{sum}(0,-1)=0$,
|
||||
the above formula also holds when $a=1$.
|
||||
|
||||
For example, consider the range $[4,7]$:
|
||||
For example, consider the range $[3,6]$:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.7]
|
||||
\fill[color=lightgray] (3,0) rectangle (7,1);
|
||||
|
@ -168,14 +168,14 @@ For example, consider the range $[4,7]$:
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The sum in the range is $8+6+1+4=19$.
|
||||
|
@ -198,17 +198,17 @@ two values in the prefix sum array:
|
|||
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Thus, the sum in the range $[4,7]$ is $27-8=19$.
|
||||
Thus, the sum in the range $[3,6]$ is $27-8=19$.
|
||||
|
||||
It is also possible to generalize this idea
|
||||
to higher dimensions.
|
||||
|
@ -274,14 +274,14 @@ For example, for the array
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
the following values will be calculated:
|
||||
|
@ -292,14 +292,14 @@ the following values will be calculated:
|
|||
\begin{tabular}{ccc}
|
||||
$a$ & $b$ & $\textrm{rmq}(a,b)$ \\
|
||||
\hline
|
||||
1 & 1 & 1 \\
|
||||
2 & 2 & 3 \\
|
||||
3 & 3 & 4 \\
|
||||
4 & 4 & 8 \\
|
||||
5 & 5 & 6 \\
|
||||
6 & 6 & 1 \\
|
||||
7 & 7 & 4 \\
|
||||
8 & 8 & 2 \\
|
||||
0 & 0 & 1 \\
|
||||
1 & 1 & 3 \\
|
||||
2 & 2 & 4 \\
|
||||
3 & 3 & 8 \\
|
||||
4 & 4 & 6 \\
|
||||
5 & 5 & 1 \\
|
||||
6 & 6 & 4 \\
|
||||
7 & 7 & 2 \\
|
||||
\end{tabular}
|
||||
|
||||
&
|
||||
|
@ -307,13 +307,13 @@ $a$ & $b$ & $\textrm{rmq}(a,b)$ \\
|
|||
\begin{tabular}{ccc}
|
||||
$a$ & $b$ & $\textrm{rmq}(a,b)$ \\
|
||||
\hline
|
||||
1 & 2 & 1 \\
|
||||
2 & 3 & 3 \\
|
||||
3 & 4 & 4 \\
|
||||
4 & 5 & 6 \\
|
||||
0 & 1 & 1 \\
|
||||
1 & 2 & 3 \\
|
||||
2 & 3 & 4 \\
|
||||
3 & 4 & 6 \\
|
||||
4 & 5 & 1 \\
|
||||
5 & 6 & 1 \\
|
||||
6 & 7 & 1 \\
|
||||
7 & 8 & 2 \\
|
||||
6 & 7 & 2 \\
|
||||
\\
|
||||
\end{tabular}
|
||||
|
||||
|
@ -322,12 +322,12 @@ $a$ & $b$ & $\textrm{rmq}(a,b)$ \\
|
|||
\begin{tabular}{ccc}
|
||||
$a$ & $b$ & $\textrm{rmq}(a,b)$ \\
|
||||
\hline
|
||||
1 & 4 & 1 \\
|
||||
2 & 5 & 3 \\
|
||||
0 & 3 & 1 \\
|
||||
1 & 4 & 3 \\
|
||||
2 & 5 & 1 \\
|
||||
3 & 6 & 1 \\
|
||||
4 & 7 & 1 \\
|
||||
5 & 8 & 1 \\
|
||||
1 & 8 & 1 \\
|
||||
0 & 7 & 1 \\
|
||||
\\
|
||||
\\
|
||||
\end{tabular}
|
||||
|
@ -352,7 +352,7 @@ We can calculate the value of $\textrm{rmq}(a,b)$ using the formula
|
|||
In the above formula, the range $[a,b]$ is represented
|
||||
as the union of the ranges $[a,a+k-1]$ and $[b-k+1,b]$, both of length $k$.
|
||||
|
||||
As an example, consider the range $[2,7]$:
|
||||
As an example, consider the range $[1,6]$:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.7]
|
||||
\fill[color=lightgray] (1,0) rectangle (7,1);
|
||||
|
@ -368,21 +368,21 @@ As an example, consider the range $[2,7]$:
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The length of the range is 6,
|
||||
and the largest power of two that does
|
||||
not exceed 6 is 4.
|
||||
Thus the range $[2,7]$ is
|
||||
the union of the ranges $[2,5]$ and $[4,7]$:
|
||||
Thus the range $[1,6]$ is
|
||||
the union of the ranges $[1,4]$ and $[3,6]$:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.7]
|
||||
\fill[color=lightgray] (1,0) rectangle (5,1);
|
||||
|
@ -398,14 +398,14 @@ the union of the ranges $[2,5]$ and $[4,7]$:
|
|||
\node at (7.5,0.5) {$2$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\begin{center}
|
||||
|
@ -424,18 +424,18 @@ the union of the ranges $[2,5]$ and $[4,7]$:
|
|||
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (0.5,1.4) {$0$};
|
||||
\node at (1.5,1.4) {$1$};
|
||||
\node at (2.5,1.4) {$2$};
|
||||
\node at (3.5,1.4) {$3$};
|
||||
\node at (4.5,1.4) {$4$};
|
||||
\node at (5.5,1.4) {$5$};
|
||||
\node at (6.5,1.4) {$6$};
|
||||
\node at (7.5,1.4) {$7$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Since $\textrm{rmq}(2,5)=3$ and $\textrm{rmq}(4,7)=1$,
|
||||
we can conclude that $\textrm{rmq}(2,7)=1$.
|
||||
Since $\textrm{rmq}(1,4)=2$ and $\textrm{rmq}(3,6)=0$,
|
||||
we can conclude that $\textrm{rmq}(1,6)=1$.
|
||||
|
||||
\section{Binary indexed trees}
|
||||
|
||||
|
@ -458,9 +458,12 @@ whole array again in $O(n)$ time.
|
|||
|
||||
\subsubsection{Structure}
|
||||
|
||||
In this section we assume that one-based indexing
|
||||
is used in all arrays.
|
||||
A binary indexed tree can be represented as an array
|
||||
where the value at position $x$
|
||||
equals the sum of elements in the range $[x-k+1,x]$,
|
||||
equals the sum of elements in the range $[x-k+1,x]$
|
||||
of the original array,
|
||||
where $k$ is the largest power of two that divides $x$.
|
||||
For example, if $x=6$, then $k=2$, because 2 divides 6
|
||||
but 4 does not divide 6.
|
||||
|
|
132
chapter18.tex
132
chapter18.tex
|
@ -168,17 +168,17 @@ Hence, the corresponding tree traversal array is as follows:
|
|||
\node at (6.5,0.5) {$8$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
\node at (8.5,0.5) {$5$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -203,17 +203,17 @@ nodes in the subtree of node $4$:
|
|||
\node at (6.5,0.5) {$8$};
|
||||
\node at (7.5,0.5) {$9$};
|
||||
\node at (8.5,0.5) {$5$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Using this fact, we can efficiently process queries
|
||||
|
@ -306,17 +306,17 @@ For example, the array for the above tree is as follows:
|
|||
\node at (6.5,-1.5) {$3$};
|
||||
\node at (7.5,-1.5) {$1$};
|
||||
\node at (8.5,-1.5) {$1$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -366,17 +366,17 @@ can be found as follows:
|
|||
\node at (6.5,-1.5) {$3$};
|
||||
\node at (7.5,-1.5) {$1$};
|
||||
\node at (8.5,-1.5) {$1$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -478,17 +478,17 @@ For example, the following array corresponds to the above tree:
|
|||
\node at (6.5,-1.5) {$12$};
|
||||
\node at (7.5,-1.5) {$10$};
|
||||
\node at (8.5,-1.5) {$6$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -535,17 +535,17 @@ the array changes as follows:
|
|||
\node at (6.5,-1.5) {$13$};
|
||||
\node at (7.5,-1.5) {$11$};
|
||||
\node at (8.5,-1.5) {$6$};
|
||||
|
||||
\footnotesize
|
||||
\node at (0.5,1.4) {$1$};
|
||||
\node at (1.5,1.4) {$2$};
|
||||
\node at (2.5,1.4) {$3$};
|
||||
\node at (3.5,1.4) {$4$};
|
||||
\node at (4.5,1.4) {$5$};
|
||||
\node at (5.5,1.4) {$6$};
|
||||
\node at (6.5,1.4) {$7$};
|
||||
\node at (7.5,1.4) {$8$};
|
||||
\node at (8.5,1.4) {$9$};
|
||||
%
|
||||
% \footnotesize
|
||||
% \node at (0.5,1.4) {$1$};
|
||||
% \node at (1.5,1.4) {$2$};
|
||||
% \node at (2.5,1.4) {$3$};
|
||||
% \node at (3.5,1.4) {$4$};
|
||||
% \node at (4.5,1.4) {$5$};
|
||||
% \node at (5.5,1.4) {$6$};
|
||||
% \node at (6.5,1.4) {$7$};
|
||||
% \node at (7.5,1.4) {$8$};
|
||||
% \node at (8.5,1.4) {$9$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
|
Loading…
Reference in New Issue