Improve language
This commit is contained in:
parent
38c59da9ea
commit
5362b37bda
|
@ -29,7 +29,7 @@ For example, consider the following graph:
|
||||||
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
\end{center}
|
\end{center}
|
||||||
A possible spanning tree for the graph is as follows:
|
One spanning tree for the graph is as follows:
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[scale=0.9]
|
\begin{tikzpicture}[scale=0.9]
|
||||||
\node[draw, circle] (1) at (1.5,2) {$1$};
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
||||||
|
@ -67,12 +67,9 @@ is 20, and such a tree can be constructed as follows:
|
||||||
\node[draw, circle] (6) at (5,1) {$6$};
|
\node[draw, circle] (6) at (5,1) {$6$};
|
||||||
|
|
||||||
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
||||||
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
||||||
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
||||||
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
||||||
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
||||||
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
||||||
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
||||||
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
@ -92,14 +89,11 @@ example graph is 32:
|
||||||
\node[draw, circle] (4) at (6.5,2) {$4$};
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
||||||
\node[draw, circle] (5) at (3,1) {$5$};
|
\node[draw, circle] (5) at (3,1) {$5$};
|
||||||
\node[draw, circle] (6) at (5,1) {$6$};
|
\node[draw, circle] (6) at (5,1) {$6$};
|
||||||
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
||||||
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
||||||
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
||||||
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
||||||
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
||||||
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
||||||
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
||||||
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
|
@ -107,15 +101,14 @@ Note that a graph may have several
|
||||||
minimum and maximum spanning trees,
|
minimum and maximum spanning trees,
|
||||||
so the trees are not unique.
|
so the trees are not unique.
|
||||||
|
|
||||||
This chapter discusses algorithms
|
It turns out that several greedy methods
|
||||||
for constructing spanning trees.
|
can be used to construct minimum and maximum
|
||||||
It turns out that it is easy to find
|
spanning trees.
|
||||||
minimum and maximum spanning trees,
|
In this chapter, we discuss two algorithms
|
||||||
because many greedy methods produce optimals solutions.
|
that process
|
||||||
We will learn two algorithms that both process
|
|
||||||
the edges of the graph ordered by their weights.
|
the edges of the graph ordered by their weights.
|
||||||
We will focus on finding minimum spanning trees,
|
We focus on finding minimum spanning trees,
|
||||||
but similar algorithms can be used for finding
|
but the same algorithms can find
|
||||||
maximum spanning trees by processing the edges in reverse order.
|
maximum spanning trees by processing the edges in reverse order.
|
||||||
|
|
||||||
\section{Kruskal's algorithm}
|
\section{Kruskal's algorithm}
|
||||||
|
|
Loading…
Reference in New Issue