Some fixes

This commit is contained in:
Antti H S Laaksonen 2017-02-26 13:51:38 +02:00
parent 25c948597e
commit 8d55dd7b61
4 changed files with 64 additions and 16 deletions

View File

@ -928,7 +928,7 @@ Google Code Jam and Yandex.Algorithm.
Of course, companies also use those contests for recruiting:
performing well in a contest is a good way to prove one's skills.
\section{Books}
\section{Resources}
\subsubsection{Competitive programming books}
@ -937,12 +937,11 @@ concentrate on competitive programming and algorithmic problem solving:
\begin{itemize}
\item S. Halim and F. Halim:
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests}, 2013
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests} \cite{hal13}
\item S. S. Skiena and M. A. Revilla:
\emph{Programming Challenges: The Programming Contest Training Manual},
Springer, 2003
\item \emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions}, 2012
\emph{Programming Challenges: The Programming Contest Training Manual} \cite{ski03}
\item K. Diks et al.: \emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions} \cite{dik12}
\end{itemize}
The first two books are intended for beginners,
@ -956,9 +955,9 @@ Some good books are:
\begin{itemize}
\item T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein:
\emph{Introduction to Algorithms}, MIT Press, 2009 (3rd edition)
\emph{Introduction to Algorithms} \cite{cor09}
\item J. Kleinberg and É. Tardos:
\emph{Algorithm Design}, Pearson, 2005
\emph{Algorithm Design} \cite{kle05}
\item S. S. Skiena:
\emph{The Algorithm Design Manual}, Springer, 2008 (2nd edition)
\emph{The Algorithm Design Manual} \cite{ski08}
\end{itemize}

View File

@ -103,8 +103,12 @@ is 6, the greedy algorithm produces the solution
$4+1+1$ while the optimal solution is $3+3$.
It is not known if the general coin problem
can be solved using any greedy algorithm.
can be solved using any greedy algorithm\footnote{However, it is possible
to \emph{check} in polynomial time
if the greedy algorithm presented in this chapter works for
a given set of coins \cite{pea05}.}.
However, as we will see in Chapter 7,
in some cases,
the general problem can be efficiently
solved using a dynamic
programming algorithm that always gives the

View File

@ -24,7 +24,9 @@ for finding shortest paths.
\index{BellmanFord algorithm}
The \key{BellmanFord algorithm} \cite{bel58} finds the
The \key{BellmanFord algorithm}\footnote{The algorithm is named after
R. E. Bellman and L. R. Ford who published it independently
in 1958 and 1956, respectively \cite{bel58,for56a}.} finds the
shortest paths from a starting node to all
other nodes in the graph.
The algorithm can process all kinds of graphs,
@ -331,7 +333,9 @@ original BellmanFord algorithm.
\index{Dijkstra's algorithm}
\key{Dijkstra's algorithm} \cite{dij59} finds the shortest
\key{Dijkstra's algorithm}\footnote{E. W. Dijkstra published the algorithm in 1959 \cite{dij59};
however, his original paper does not mention how to implement the algorithm efficiently.}
finds the shortest
paths from the starting node to all other nodes,
like the BellmanFord algorithm.
The benefit in Dijsktra's algorithm is that
@ -594,7 +598,9 @@ at most one distance to the priority queue.
\index{FloydWarshall algorithm}
The \key{FloydWarshall algorithm} \cite{flo62}
The \key{FloydWarshall algorithm}\footnote{The algorithm
is named after R. W. Floyd and S. Warshall
who published it independently in 1962 \cite{flo62,war62}.}
is an alternative way to approach the problem
of finding shortest paths.
Unlike the other algorihms in this chapter,

View File

@ -38,12 +38,12 @@
\bibitem{ben86}
J. Bentley.
\emph{Programming Pearls}.
Addison-Wesley, 1986.
Addison-Wesley, 1999 (2nd edition).
\bibitem{bou01}
C. L. Bouton.
Nim, a game with a complete mathematical theory.
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
pro \emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
% \bibitem{bur97}
% W. Burnside.
@ -54,11 +54,20 @@
Codeforces: On ''Mo's algorithm'',
\url{http://codeforces.com/blog/entry/20032}
\bibitem{cor09}
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
\emph{Introduction to Algorithms}, MIT Press, 2009 (3rd edition).
\bibitem{dij59}
E. W. Dijkstra.
A note on two problems in connexion with graphs.
\emph{Numerische Mathematik}, 1(1):269--271, 1959.
\bibitem{dik12}
K. Diks et al.
\emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions}, University of Warsaw, 2012.
% \bibitem{dil50}
% R. P. Dilworth.
% A decomposition theorem for partially ordered sets.
@ -104,6 +113,11 @@
Algorithm 97: shortest path.
\emph{Communications of the ACM}, 5(6):345, 1962.
\bibitem{for56a}
L. R. Ford.
Network flow theory.
RAND Corporation, Santa Monica, California, 1956.
\bibitem{for56}
L. R. Ford and D. R. Fulkerson.
Maximal flow through a network.
@ -152,7 +166,9 @@
% On representatives of subsets.
% \emph{Journal London Mathematical Society} 10(1):26--30, 1935.
On representatives of subsets. J. London Math. Soc, 10(1), 26-30.
\bibitem{hal13}
S. Halim and F. Halim.
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests}, 2013.
\bibitem{hel62}
M. Held and R. M. Karp.
@ -198,6 +214,10 @@
Efficient randomized pattern-matching algorithms.
\emph{IBM Journal of Research and Development}, 31(2):249--260, 1987.
\bibitem{kle05}
J. Kleinberg and É. Tardos.
\emph{Algorithm Design}, Pearson, 2005.
% \bibitem{kas61}
% P. W. Kasteleyn.
% The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
@ -247,6 +267,11 @@
% \emph{Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines
% für Böhmen "Lotos" in Prag. (Neue Folge)}, 19:311--319, 1899.
\bibitem{pea05}
D. Pearson.
A polynomial-time algorithm for the change-making problem.
\emph{Operations Research Letters}, 33(3):231--234, 2005.
\bibitem{pri57}
R. C. Prim.
Shortest connection networks and some generalizations.
@ -271,6 +296,15 @@
A strong-connectivity algorithm and its applications in data flow analysis.
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
\bibitem{ski08}
S. S. Skiena.
\emph{The Algorithm Design Manual}, Springer, 2008 (2nd edition).
\bibitem{ski03}
S. S. Skiena and M. A. Revilla.
\emph{Programming Challenges: The Programming Contest Training Manual},
Springer, 2003.
\bibitem{spr35}
R. Sprague.
Über mathematische Kampfspiele.
@ -306,6 +340,11 @@
\emph{Des Rösselsprunges einfachste und allgemeinste Lösung}.
Schmalkalden, 1823.
\bibitem{war62}
S. Warshall.
A theorem on boolean matrices.
\emph{Journal of the ACM}, 9(1):11--12, 1962.
% \bibitem{zec72}
% E. Zeckendorf.
% Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.