Show full Prüfer code example
This commit is contained in:
parent
41a2e0c721
commit
d59e5c0e80
|
@ -842,7 +842,8 @@ that removes $n-2$ leaves from the tree.
|
|||
At each step, the leaf with the smallest label is removed,
|
||||
and the label of its only neighbor is added to the code.
|
||||
|
||||
For example, the Prüfer code for
|
||||
For example, let us calculate the Prüfer code
|
||||
of the following graph:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\node[draw, circle] (1) at (2,3) {$1$};
|
||||
|
@ -851,17 +852,62 @@ For example, the Prüfer code for
|
|||
\node[draw, circle] (4) at (4,1) {$4$};
|
||||
\node[draw, circle] (5) at (5.5,2) {$5$};
|
||||
|
||||
%\path[draw,thick,-] (1) -- (2);
|
||||
%\path[draw,thick,-] (1) -- (3);
|
||||
\path[draw,thick,-] (1) -- (4);
|
||||
\path[draw,thick,-] (3) -- (4);
|
||||
\path[draw,thick,-] (2) -- (4);
|
||||
\path[draw,thick,-] (2) -- (5);
|
||||
%\path[draw,thick,-] (4) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
is $[4,4,2]$, because we first remove
|
||||
node 1, then node 3 and finally node 5.
|
||||
|
||||
First we remove node 1 and add node 4 to the code:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
%\node[draw, circle] (1) at (2,3) {$1$};
|
||||
\node[draw, circle] (2) at (4,3) {$2$};
|
||||
\node[draw, circle] (3) at (2,1) {$3$};
|
||||
\node[draw, circle] (4) at (4,1) {$4$};
|
||||
\node[draw, circle] (5) at (5.5,2) {$5$};
|
||||
|
||||
%\path[draw,thick,-] (1) -- (4);
|
||||
\path[draw,thick,-] (3) -- (4);
|
||||
\path[draw,thick,-] (2) -- (4);
|
||||
\path[draw,thick,-] (2) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Then we remove node 3 and add node 4 to the code:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
%\node[draw, circle] (1) at (2,3) {$1$};
|
||||
\node[draw, circle] (2) at (4,3) {$2$};
|
||||
%\node[draw, circle] (3) at (2,1) {$3$};
|
||||
\node[draw, circle] (4) at (4,1) {$4$};
|
||||
\node[draw, circle] (5) at (5.5,2) {$5$};
|
||||
|
||||
%\path[draw,thick,-] (1) -- (4);
|
||||
%\path[draw,thick,-] (3) -- (4);
|
||||
\path[draw,thick,-] (2) -- (4);
|
||||
\path[draw,thick,-] (2) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Finally we remove node 4 and add node 2 to the code:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
%\node[draw, circle] (1) at (2,3) {$1$};
|
||||
\node[draw, circle] (2) at (4,3) {$2$};
|
||||
%\node[draw, circle] (3) at (2,1) {$3$};
|
||||
%\node[draw, circle] (4) at (4,1) {$4$};
|
||||
\node[draw, circle] (5) at (5.5,2) {$5$};
|
||||
|
||||
%\path[draw,thick,-] (1) -- (4);
|
||||
%\path[draw,thick,-] (3) -- (4);
|
||||
%\path[draw,thick,-] (2) -- (4);
|
||||
\path[draw,thick,-] (2) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Thus, the Prüfer code of the graph is $[4,4,2]$.
|
||||
|
||||
We can construct a Prüfer code for any tree,
|
||||
and more importantly,
|
||||
|
|
Loading…
Reference in New Issue