diff --git a/chapter07.tex b/chapter07.tex index 70fd873..556d9be 100644 --- a/chapter07.tex +++ b/chapter07.tex @@ -247,7 +247,7 @@ value[0] = 0; for (int x = 1; x <= n; x++) { value[x] = INF; for (auto c : coins) { - if (x-c >= 0) { + if (x >= c) { value[x] = min(value[x], value[x-c]+1); } } @@ -283,7 +283,7 @@ value[0] = 0; for (int x = 1; x <= n; x++) { value[x] = INF; for (auto c : coins) { - if (x-c >= 0 && value[x-c]+1 < value[x]) { + if ((x >= c) && value[x-c]+1 < value[x]) { value[x] = value[x-c]+1; first[x] = c; } @@ -358,7 +358,7 @@ for $0 \le x \le n$: count[0] = 1; for (int x = 1; x <= n; x++) { for (auto c : coins) { - if (x-c >= 0) { + if (x >= c) { count[x] += count[x-c]; } } @@ -634,12 +634,22 @@ int sum[N][N]; \end{lstlisting} and calculate the sums as follows: \begin{lstlisting} -for (int y = 1; y <= n; y++) { - for (int x = 1; x <= n; x++) { +for (int y = 1; y < N; y++) { + for (int x = 1; x < N; x++) { sum[y][x] = max(sum[y][x-1],sum[y-1][x])+value[y][x]; } } \end{lstlisting} +However, below is a better solution that only uses one dimensional +array to keep track of the maximum sums +\begin{lstlisting} +for (int y = 1; y < N; ++y) { + sum[0] += value[y][0]; + for (int x = 1; x < N; ++x) { + sum[x] = value[y][x] + max(sum[x-1], sum[x]); + } +} +\end{lstlisting} The time complexity of the algorithm is $O(n^2)$. \section{Knapsack problems}