References etc.
This commit is contained in:
parent
b2b2975469
commit
f81950a5a6
|
@ -359,7 +359,8 @@ The expected value for $X$ in a geometric distribution is
|
||||||
|
|
||||||
\index{Markov chain}
|
\index{Markov chain}
|
||||||
|
|
||||||
A \key{Markov chain} is a random process
|
A \key{Markov chain}\footnote{A. A. Markov (1856--1922)
|
||||||
|
was a Russian mathematician.} is a random process
|
||||||
that consists of states and transitions between them.
|
that consists of states and transitions between them.
|
||||||
For each state, we know the probabilities
|
For each state, we know the probabilities
|
||||||
for moving to other states.
|
for moving to other states.
|
||||||
|
@ -516,7 +517,9 @@ It turns out that we can find order statistics
|
||||||
using a randomized algorithm without sorting the array.
|
using a randomized algorithm without sorting the array.
|
||||||
The algorithm is a Las Vegas algorithm:
|
The algorithm is a Las Vegas algorithm:
|
||||||
its running time is usually $O(n)$
|
its running time is usually $O(n)$
|
||||||
but $O(n^2)$ in the worst case.
|
but $O(n^2)$ in the worst case\footnote{C. A. R. Hoare
|
||||||
|
discovered both this algorithm, known as \key{quickselect} \cite{hoa61b},
|
||||||
|
and a similar sorting algorithm, known as \key{quicksort} \cite{hoa61a}.}.
|
||||||
|
|
||||||
The algorithm chooses a random element $x$
|
The algorithm chooses a random element $x$
|
||||||
in the array, and moves elements smaller than $x$
|
in the array, and moves elements smaller than $x$
|
||||||
|
@ -561,7 +564,8 @@ answer would by easier than to calculate it from scratch.
|
||||||
|
|
||||||
It turns out that we can solve the problem
|
It turns out that we can solve the problem
|
||||||
using a Monte Carlo algorithm whose
|
using a Monte Carlo algorithm whose
|
||||||
time complexity is only $O(n^2)$.
|
time complexity is only $O(n^2)$\footnote{This algorithm is sometimes
|
||||||
|
called \index{Freivalds' algoritm} \key{Freivalds' algorithm} \cite{fre77}.}.
|
||||||
The idea is simple: we choose a random vector
|
The idea is simple: we choose a random vector
|
||||||
$X$ of $n$ elements, and calculate the matrices
|
$X$ of $n$ elements, and calculate the matrices
|
||||||
$ABX$ and $CX$. If $ABX=CX$, we report that $AB=C$,
|
$ABX$ and $CX$. If $ABX=CX$, we report that $AB=C$,
|
||||||
|
|
|
@ -248,7 +248,8 @@ and this is always the final state.
|
||||||
It turns out that we can easily classify
|
It turns out that we can easily classify
|
||||||
any nim state by calculating
|
any nim state by calculating
|
||||||
the \key{nim sum} $x_1 \oplus x_2 \oplus \cdots \oplus x_n$,
|
the \key{nim sum} $x_1 \oplus x_2 \oplus \cdots \oplus x_n$,
|
||||||
where $\oplus$ is the xor operation.
|
where $\oplus$ is the xor operation\footnote{The optimal strategy
|
||||||
|
for nim was published in 1901 by C. L. Bouton \cite{bou01}}.
|
||||||
The states whose nim sum is 0 are losing states,
|
The states whose nim sum is 0 are losing states,
|
||||||
and all other states are winning states.
|
and all other states are winning states.
|
||||||
For example, the nim sum for
|
For example, the nim sum for
|
||||||
|
@ -367,7 +368,8 @@ so the nim sum is not 0.
|
||||||
|
|
||||||
\index{Sprague–Grundy theorem}
|
\index{Sprague–Grundy theorem}
|
||||||
|
|
||||||
The \key{Sprague–Grundy theorem} generalizes the
|
The \key{Sprague–Grundy theorem}\footnote{The theorem was discovered
|
||||||
|
independently by R. Sprague \cite{spr35} and P. M. Grundy \cite{gru39}} generalizes the
|
||||||
strategy used in nim to all games that fulfil
|
strategy used in nim to all games that fulfil
|
||||||
the following requirements:
|
the following requirements:
|
||||||
|
|
||||||
|
|
30
list.tex
30
list.tex
|
@ -35,6 +35,11 @@
|
||||||
\emph{Programming Pearls}.
|
\emph{Programming Pearls}.
|
||||||
Addison-Wesley, 1986.
|
Addison-Wesley, 1986.
|
||||||
|
|
||||||
|
\bibitem{bou01}
|
||||||
|
C. L. Bouton.
|
||||||
|
Nim, a game with a complete mathematical theory.
|
||||||
|
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||||
|
|
||||||
\bibitem{cod15}
|
\bibitem{cod15}
|
||||||
Codeforces: On ''Mo's algorithm'',
|
Codeforces: On ''Mo's algorithm'',
|
||||||
\url{http://codeforces.com/blog/entry/20032}
|
\url{http://codeforces.com/blog/entry/20032}
|
||||||
|
@ -94,6 +99,11 @@
|
||||||
Maximal flow through a network.
|
Maximal flow through a network.
|
||||||
\emph{Canadian Journal of Mathematics}, 8(3):399--404, 1956.
|
\emph{Canadian Journal of Mathematics}, 8(3):399--404, 1956.
|
||||||
|
|
||||||
|
\bibitem{fre77}
|
||||||
|
R. Freivalds.
|
||||||
|
Probabilistic machines can use less running time.
|
||||||
|
In \emph{IFIP congress}, 839--842, 1977.
|
||||||
|
|
||||||
\bibitem{gal14}
|
\bibitem{gal14}
|
||||||
F. Le Gall.
|
F. Le Gall.
|
||||||
Powers of tensors and fast matrix multiplication.
|
Powers of tensors and fast matrix multiplication.
|
||||||
|
@ -116,6 +126,11 @@
|
||||||
\emph{2014 IEEE 55th Annual Symposium on Foundations of Computer Science},
|
\emph{2014 IEEE 55th Annual Symposium on Foundations of Computer Science},
|
||||||
621--630, 2014.
|
621--630, 2014.
|
||||||
|
|
||||||
|
\bibitem{gru39}
|
||||||
|
P. M. Grundy.
|
||||||
|
Mathematics and games.
|
||||||
|
\emph{Eureka}, 2(5):6--8, 1939.
|
||||||
|
|
||||||
\bibitem{gus97}
|
\bibitem{gus97}
|
||||||
D. Gusfield.
|
D. Gusfield.
|
||||||
\emph{Algorithms on Strings, Trees and Sequences:
|
\emph{Algorithms on Strings, Trees and Sequences:
|
||||||
|
@ -139,6 +154,16 @@
|
||||||
Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.
|
Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.
|
||||||
\emph{Mathematische Annalen}, 6(1), 30--32, 1873.
|
\emph{Mathematische Annalen}, 6(1), 30--32, 1873.
|
||||||
|
|
||||||
|
\bibitem{hoa61a}
|
||||||
|
C. A. R. Hoare.
|
||||||
|
Algorithm 64: Quicksort.
|
||||||
|
\emph{Communications of the ACM}, 4(7):321, 1961.
|
||||||
|
|
||||||
|
\bibitem{hoa61b}
|
||||||
|
C. A. R. Hoare.
|
||||||
|
Algorithm 65: Find.
|
||||||
|
\emph{Communications of the ACM}, 4(7):321--322, 1961.
|
||||||
|
|
||||||
\bibitem{hop71}
|
\bibitem{hop71}
|
||||||
J. E. Hopcroft and J. D. Ullman.
|
J. E. Hopcroft and J. D. Ullman.
|
||||||
A linear list merging algorithm.
|
A linear list merging algorithm.
|
||||||
|
@ -231,6 +256,11 @@
|
||||||
A strong-connectivity algorithm and its applications in data flow analysis.
|
A strong-connectivity algorithm and its applications in data flow analysis.
|
||||||
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
|
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
|
||||||
|
|
||||||
|
\bibitem{spr35}
|
||||||
|
R. Sprague.
|
||||||
|
Über mathematische Kampfspiele.
|
||||||
|
\emph{Tohoku Mathematical Journal}, 41:438--444, 1935.
|
||||||
|
|
||||||
\bibitem{sta06}
|
\bibitem{sta06}
|
||||||
P. Stańczyk.
|
P. Stańczyk.
|
||||||
\emph{Algorytmika praktyczna w konkursach Informatycznych},
|
\emph{Algorytmika praktyczna w konkursach Informatycznych},
|
||||||
|
|
Loading…
Reference in New Issue