\chapter{Matrices} \index{matrix} A \key{matrix} is a mathematical concept that corresponds to a two-dimensional array in programming. For example, \[ A = \begin{bmatrix} 6 & 13 & 7 & 4 \\ 7 & 0 & 8 & 2 \\ 9 & 5 & 4 & 18 \\ \end{bmatrix} \] is a matrix of size $3 \times 4$, i.e., it has 3 rows and 4 columns. The notation $[i,j]$ refers to the element in row $i$ and column $j$ in a matrix. For example, in the above matrix, $A[2,3]=8$ and $A[3,1]=9$. \index{vector} A special case of a matrix is a \key{vector} that is a one-dimensional matrix of size $n \times 1$. For example, \[ V = \begin{bmatrix} 4 \\ 7 \\ 5 \\ \end{bmatrix} \] is a vector that contains three elements. \index{transpose} The \key{transpose} $A^T$ of a matrix $A$ is obtained when the rows and columns in $A$ are swapped, i.e., $A^T[i,j]=A[j,i]$: \[ A^T = \begin{bmatrix} 6 & 7 & 9 \\ 13 & 0 & 5 \\ 7 & 8 & 4 \\ 4 & 2 & 18 \\ \end{bmatrix} \] \index{square matrix} A matrix is a \key{square matrix} if it has the same number of rows and columns. For example, the following matrix is a square matrix: \[ S = \begin{bmatrix} 3 & 12 & 4 \\ 5 & 9 & 15 \\ 0 & 2 & 4 \\ \end{bmatrix} \] \section{Operations} The sum $A+B$ of matrices $A$ and $B$ is defined if the matrices are of the same size. The result is a matrix where each element is the sum of the corresponding elements in $A$ and $B$. For example, \[ \begin{bmatrix} 6 & 1 & 4 \\ 3 & 9 & 2 \\ \end{bmatrix} + \begin{bmatrix} 4 & 9 & 3 \\ 8 & 1 & 3 \\ \end{bmatrix} = \begin{bmatrix} 6+4 & 1+9 & 4+3 \\ 3+8 & 9+1 & 2+3 \\ \end{bmatrix} = \begin{bmatrix} 10 & 10 & 7 \\ 11 & 10 & 5 \\ \end{bmatrix}. \] Multiplying a matrix $A$ by a value $x$ means that each element of $A$ is multiplied by $x$. For example, \[ 2 \cdot \begin{bmatrix} 6 & 1 & 4 \\ 3 & 9 & 2 \\ \end{bmatrix} = \begin{bmatrix} 2 \cdot 6 & 2\cdot1 & 2\cdot4 \\ 2\cdot3 & 2\cdot9 & 2\cdot2 \\ \end{bmatrix} = \begin{bmatrix} 12 & 2 & 8 \\ 6 & 18 & 4 \\ \end{bmatrix}. \] \subsubsection{Matrix multiplication} \index{matrix multiplication} The product $AB$ of matrices $A$ and $B$ is defined if $A$ is of size $a \times n$ and $B$ is of size $n \times b$, i.e., the width of $A$ equals the height of $B$. The result is a matrix of size $a \times b$ whose elements are calculated using the formula \[ AB[i,j] = \sum_{k=1}^n A[i,k] \cdot B[k,j]. \] The idea is that each element in $AB$ is a sum of products of elements in $A$ and $B$ according to the following picture: \begin{center} \begin{tikzpicture}[scale=0.5] \draw (0,0) grid (4,3); \draw (5,0) grid (10,3); \draw (5,4) grid (10,8); \node at (2,-1) {$A$}; \node at (7.5,-1) {$AB$}; \node at (11,6) {$B$}; \draw[thick,->,red,line width=2pt] (0,1.5) -- (4,1.5); \draw[thick,->,red,line width=2pt] (6.5,8) -- (6.5,4); \draw[thick,red,line width=2pt] (6.5,1.5) circle (0.4); \end{tikzpicture} \end{center} For example, \[ \begin{bmatrix} 1 & 4 \\ 3 & 9 \\ 8 & 6 \\ \end{bmatrix} \cdot \begin{bmatrix} 1 & 6 \\ 2 & 9 \\ \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 4 \cdot 2 & 1 \cdot 6 + 4 \cdot 9 \\ 3 \cdot 1 + 9 \cdot 2 & 3 \cdot 6 + 9 \cdot 9 \\ 8 \cdot 1 + 6 \cdot 2 & 8 \cdot 6 + 6 \cdot 9 \\ \end{bmatrix} = \begin{bmatrix} 9 & 42 \\ 21 & 99 \\ 20 & 102 \\ \end{bmatrix}. \] Matrix multiplication is associative, so $A(BC)=(AB)C$ holds, but it is not commutative, so $AB = BA$ does not usually hold. \index{identity matrix} An \key{identity matrix} is a square matrix where each element on the diagonal is 1 and all other elements are 0. For example, the following matrix is the $3 \times 3$ identity matrix: \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \] \begin{samepage} Multiplying a matrix by an identity matrix does not change it. For example, \[ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 1 & 4 \\ 3 & 9 \\ 8 & 6 \\ \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 3 & 9 \\ 8 & 6 \\ \end{bmatrix} \hspace{10px} \textrm{and} \hspace{10px} \begin{bmatrix} 1 & 4 \\ 3 & 9 \\ 8 & 6 \\ \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 3 & 9 \\ 8 & 6 \\ \end{bmatrix}. \] \end{samepage} Using a straightforward algorithm, we can calculate the product of two $n \times n$ matrices in $O(n^3)$ time. There are also more efficient algorithms for matrix multiplication\footnote{The first such algorithm, with time complexity $O(n^{2.80735})$, was published in 1969 \cite{str69}, and the best current algorithm works in $O(n^{2.37286})$ time \cite{gal14}.}, but they are mostly of theoretical interest and such special algorithms are not needed in competitive programming. \subsubsection{Matrix power} \index{matrix power} The power $A^k$ of a matrix $A$ is defined if $A$ is a square matrix. The definition is based on matrix multiplication: \[ A^k = \underbrace{A \cdot A \cdot A \cdots A}_{\textrm{$k$ times}} \] For example, \[ \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix}^3 = \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix} \cdot \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix} \cdot \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix} = \begin{bmatrix} 48 & 165 \\ 33 & 114 \\ \end{bmatrix}. \] In addition, $A^0$ is an identity matrix. For example, \[ \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix}^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}. \] The matrix $A^k$ can be efficiently calculated in $O(n^3 \log k)$ time using the algorithm in Chapter 21.2. For example, \[ \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix}^8 = \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix}^4 \cdot \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ \end{bmatrix}^4. \] \subsubsection{Determinant} \index{determinant} The \key{determinant} $\det(A)$ of a matrix $A$ is defined if $A$ is a square matrix. If $A$ is of size $1 \times 1$, then $\det(A)=A[1,1]$. The determinant of a larger matrix is calculated recursively using the formula \index{cofactor} \[\det(A)=\sum_{j=1}^n A[1,j] C[1,j],\] where $C[i,j]$ is the \key{cofactor} of $A$ at $[i,j]$. The cofactor is calculated using the formula \[C[i,j] = (-1)^{i+j} \det(M[i,j]),\] where $M[i,j]$ is obtained by removing row $i$ and column $j$ from $A$. Due to the coefficient $(-1)^{i+j}$ in the cofactor, every other determinant is positive and negative. For example, \[ \det( \begin{bmatrix} 3 & 4 \\ 1 & 6 \\ \end{bmatrix} ) = 3 \cdot 6 - 4 \cdot 1 = 14 \] and \[ \det( \begin{bmatrix} 2 & 4 & 3 \\ 5 & 1 & 6 \\ 7 & 2 & 4 \\ \end{bmatrix} ) = 2 \cdot \det( \begin{bmatrix} 1 & 6 \\ 2 & 4 \\ \end{bmatrix} ) -4 \cdot \det( \begin{bmatrix} 5 & 6 \\ 7 & 4 \\ \end{bmatrix} ) +3 \cdot \det( \begin{bmatrix} 5 & 1 \\ 7 & 2 \\ \end{bmatrix} ) = 81. \] \index{inverse matrix} The determinant of $A$ tells us whether there is an \key{inverse matrix} $A^{-1}$ such that $A \cdot A^{-1} = I$, where $I$ is an identity matrix. It turns out that $A^{-1}$ exists exactly when $\det(A) \neq 0$, and it can be calculated using the formula \[A^{-1}[i,j] = \frac{C[j,i]}{det(A)}.\] For example, \[ \underbrace{ \begin{bmatrix} 2 & 4 & 3\\ 5 & 1 & 6\\ 7 & 2 & 4\\ \end{bmatrix} }_{A} \cdot \underbrace{ \frac{1}{81} \begin{bmatrix} -8 & -10 & 21 \\ 22 & -13 & 3 \\ 3 & 24 & -18 \\ \end{bmatrix} }_{A^{-1}} = \underbrace{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} }_{I}. \] \section{Linear recurrences} \index{linear recurrence} A \key{linear recurrence} can be represented as a function $f(n)$ such that the initial values are $f(0),f(1),\ldots,f(k-1)$ and the larger values are calculated recursively using the formula \[f(n) = c_1 f(n-1) + c_2 f(n-2) + \ldots + c_k f (n-k),\] where $c_1,c_2,\ldots,c_k$ are constant coefficients. We can use dynamic programming to calculate any value of $f(n)$ in $O(kn)$ time by calculating all values of $f(0),f(1),\ldots,f(n)$ one after another. However, if $k$ is small, it is possible to calculate $f(n)$ much more efficiently in $O(k^3 \log n)$ time using matrix operations. \subsubsection{Fibonacci numbers} \index{Fibonacci number} A simple example of a linear recurrence is the following function that defines the Fibonacci numbers: \[ \begin{array}{lcl} f(0) & = & 0 \\ f(1) & = & 1 \\ f(n) & = & f(n-1)+f(n-2) \\ \end{array} \] In this case, $k=2$ and $c_1=c_2=1$. \begin{samepage} The idea is to represent the Fibonacci formula as a square matrix $X$ of size $2 \times 2$, for which the following holds: \[ X \cdot \begin{bmatrix} f(i) \\ f(i+1) \\ \end{bmatrix} = \begin{bmatrix} f(i+1) \\ f(i+2) \\ \end{bmatrix} \] Thus, values $f(i)$ and $f(i+1)$ are given as ''input'' for $X$, and $X$ calculates values $f(i+1)$ and $f(i+2)$ from them. It turns out that such a matrix is \[ X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix}. \] \end{samepage} \noindent For example, \[ \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} f(5) \\ f(6) \\ \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 8 \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 13 \\ \end{bmatrix} = \begin{bmatrix} f(6) \\ f(7) \\ \end{bmatrix}. \] Thus, we can calculate $f(n)$ using the formula \[ \begin{bmatrix} f(n) \\ f(n+1) \\ \end{bmatrix} = X^n \cdot \begin{bmatrix} f(0) \\ f(1) \\ \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix}^n \cdot \begin{bmatrix} 0 \\ 1 \\ \end{bmatrix}. \] The value of $X^n$ can be calculated in $O(k^3 \log n)$ time, so the value of $f(n)$ can also be calculated in $O(k^3 \log n)$ time. \subsubsection{General case} Let us now consider the general case where $f(n)$ is any linear recurrence. Again, our goal is to construct a matrix $X$ for which \[ X \cdot \begin{bmatrix} f(i) \\ f(i+1) \\ \vdots \\ f(i+k-1) \\ \end{bmatrix} = \begin{bmatrix} f(i+1) \\ f(i+2) \\ \vdots \\ f(i+k) \\ \end{bmatrix}. \] Such a matrix is \[ X = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ c_k & c_{k-1} & c_{k-2} & c_{k-3} & \cdots & c_1 \\ \end{bmatrix}. \] In the first $k-1$ rows, each element is 0 except that one element is 1. These rows replace $f(i)$ with $f(i+1)$, $f(i+1)$ with $f(i+2)$, and so on. The last row contains the coefficients of the recurrence to calculate the new value $f(i+k)$. \begin{samepage} Now, $f(n)$ can be calculated in $O(k^3 \log n)$ time using the formula \[ \begin{bmatrix} f(n) \\ f(n+1) \\ \vdots \\ f(n+k-1) \\ \end{bmatrix} = X^n \cdot \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \\ \end{bmatrix}. \] \end{samepage} \section{Graphs and matrices} \subsubsection{Counting paths} The powers of an adjacency matrix of a graph have an interesting property. When $V$ is an adjacency matrix of an unweighted graph, the matrix $V^n$ contains the numbers of paths of $n$ edges between the nodes in the graph. For example, for the graph \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1,3) {$1$}; \node[draw, circle] (2) at (1,1) {$4$}; \node[draw, circle] (3) at (3,3) {$2$}; \node[draw, circle] (4) at (5,3) {$3$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,->,>=latex] (1) -- (2); \path[draw,thick,->,>=latex] (2) -- (3); \path[draw,thick,->,>=latex] (3) -- (1); \path[draw,thick,->,>=latex] (4) -- (3); \path[draw,thick,->,>=latex] (3) -- (5); \path[draw,thick,->,>=latex] (3) -- (6); \path[draw,thick,->,>=latex] (6) -- (4); \path[draw,thick,->,>=latex] (6) -- (5); \end{tikzpicture} \end{center} the adjacency matrix is \[ V= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ \end{bmatrix}. \] Now, for example, the matrix \[ V^4= \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 2 & 0 & 0 & 0 & 2 & 2 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ \end{bmatrix} \] contains the numbers of paths of 4 edges between the nodes. For example, $V^4[2,5]=2$, because there are two paths of 4 edges from node 2 to node 5: $2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5$ and $2 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 5$. \subsubsection{Shortest paths} Using a similar idea in a weighted graph, we can calculate for each pair of nodes the shortest path between them that contains exactly $n$ edges. To calculate this, we have to define matrix multiplication in a new way, so that we do not calculate the numbers of paths but minimize the lengths of paths. \begin{samepage} As an example, consider the following graph: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1,3) {$1$}; \node[draw, circle] (2) at (1,1) {$4$}; \node[draw, circle] (3) at (3,3) {$2$}; \node[draw, circle] (4) at (5,3) {$3$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,->,>=latex] (1) -- node[font=\small,label=left:4] {} (2); \path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:1] {} (3); \path[draw,thick,->,>=latex] (3) -- node[font=\small,label=north:2] {} (1); \path[draw,thick,->,>=latex] (4) -- node[font=\small,label=north:4] {} (3); \path[draw,thick,->,>=latex] (3) -- node[font=\small,label=left:1] {} (5); \path[draw,thick,->,>=latex] (3) -- node[font=\small,label=left:2] {} (6); \path[draw,thick,->,>=latex] (6) -- node[font=\small,label=right:3] {} (4); \path[draw,thick,->,>=latex] (6) -- node[font=\small,label=below:2] {} (5); \end{tikzpicture} \end{center} \end{samepage} Let us construct an adjacency matrix where $\infty$ means that an edge does not exist, and other values correspond to edge weights. The matrix is \[ V= \begin{bmatrix} \infty & \infty & \infty & 4 & \infty & \infty \\ 2 & \infty & \infty & \infty & 1 & 2 \\ \infty & 4 & \infty & \infty & \infty & \infty \\ \infty & 1 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 3 & \infty & 2 & \infty \\ \end{bmatrix}. \] Instead of the formula \[ AB[i,j] = \sum_{k=1}^n A[i,k] \cdot B[k,j] \] we now use the formula \[ AB[i,j] = \min_{k=1}^n A[i,k] + B[k,j] \] for matrix multiplication, so we calculate a minimum instead of a sum, and a sum of elements instead of a product. After this modification, matrix powers correspond to shortest paths in the graph. For example, as \[ V^4= \begin{bmatrix} \infty & \infty & 10 & 11 & 9 & \infty \\ 9 & \infty & \infty & \infty & 8 & 9 \\ \infty & 11 & \infty & \infty & \infty & \infty \\ \infty & 8 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 12 & 13 & 11 & \infty \\ \end{bmatrix}, \] we can conclude that the shortest path of 4 edges from node 2 to node 5 has length 8. This path is $2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5$. \subsubsection{Kirchhoff's theorem} \index{Kirchhoff's theorem} \index{spanning tree} \key{Kirchhoff's theorem} provides a way to calculate the number of spanning trees of a graph as a determinant of a special matrix. For example, the graph \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1,3) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (1,1) {$3$}; \node[draw, circle] (4) at (3,1) {$4$}; \path[draw,thick,-] (1) -- (2); \path[draw,thick,-] (1) -- (3); \path[draw,thick,-] (3) -- (4); \path[draw,thick,-] (1) -- (4); \end{tikzpicture} \end{center} has three spanning trees: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1a) at (1,3) {$1$}; \node[draw, circle] (2a) at (3,3) {$2$}; \node[draw, circle] (3a) at (1,1) {$3$}; \node[draw, circle] (4a) at (3,1) {$4$}; \path[draw,thick,-] (1a) -- (2a); %\path[draw,thick,-] (1a) -- (3a); \path[draw,thick,-] (3a) -- (4a); \path[draw,thick,-] (1a) -- (4a); \node[draw, circle] (1b) at (1+4,3) {$1$}; \node[draw, circle] (2b) at (3+4,3) {$2$}; \node[draw, circle] (3b) at (1+4,1) {$3$}; \node[draw, circle] (4b) at (3+4,1) {$4$}; \path[draw,thick,-] (1b) -- (2b); \path[draw,thick,-] (1b) -- (3b); %\path[draw,thick,-] (3b) -- (4b); \path[draw,thick,-] (1b) -- (4b); \node[draw, circle] (1c) at (1+8,3) {$1$}; \node[draw, circle] (2c) at (3+8,3) {$2$}; \node[draw, circle] (3c) at (1+8,1) {$3$}; \node[draw, circle] (4c) at (3+8,1) {$4$}; \path[draw,thick,-] (1c) -- (2c); \path[draw,thick,-] (1c) -- (3c); \path[draw,thick,-] (3c) -- (4c); %\path[draw,thick,-] (1c) -- (4c); \end{tikzpicture} \end{center} \index{Laplacean matrix} To calculate the number of spanning trees, we construct a \key{Laplacean matrix} $L$, where $L[i,i]$ is the degree of node $i$ and $L[i,j]=-1$ if there is an edge between nodes $i$ and $j$, and otherwise $L[i,j]=0$. The Laplacean matrix for the above graph is as follows: \[ L= \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 2 & -1 \\ -1 & 0 & -1 & 2 \\ \end{bmatrix} \] The number of spanning trees equals the determinant of a matrix that is obtained when we remove any row and any column from $L$. For example, if we remove the first row and column, the result is \[ \det( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \\ \end{bmatrix} ) =3.\] The determinant is always the same, regardless of which row and column we remove from $L$. Note that a special case of Kirchhoff's theorem is Cayley's formula in Chapter 22.5, because in a complete graph of $n$ nodes \[ \det( \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \\ \end{bmatrix} ) =n^{n-2}.\]