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Preface

The purpose of this book is to give you a thorough introduction to competitive pro-
gramming. The book assumes that you already know the basics of programming,
but previous background on competitive programming is not needed.

The book is especially intended for high school students who want to learn
algorithms and possibly participate in the International Olympiad in Informatics
(IOI). The book is also suitable for university students and anybody else interested
in competitive programming.

It takes a long time to become a good competitive programmer, but it is also
an opportunity to learn a lot. You can be sure that you will learn a great deal
about algorithms if you spend time reading the book and solving exercises.

The book is under continuous development. You can always send feedback
about the book to ahslaaks@cs.helsinki.fi.
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Basic techniques
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Chapter 1

Introduction

Competitive programming combines two topics: (1) design of algorithms and (2)
implementation of algorithms.

The design of algorithms consists of problem solving and mathematical
thinking. Skills for analyzing problems and solving them using creativity is
needed. An algorithm for solving a problem has to be both correct and efficient,
and the core of the problem is often how to invent an efficient algorithm.

Theoretical knowledge of algorithms is very important to competitive pro-
grammers. Typically, a solution for a problem is a combination of well-known
techniques and new insights. The techniques that appear in competitive pro-
gramming also form the basis for the scientific research of algorithms.

The implementation of algorithms requires good programming skills. In
competitive programming, the solutions are graded by testing an implemented
algorithm using a set of test cases. Thus, it is not enough that the idea of the
algorithm is correct, but the implementation has to be correct as well.

Good coding style in contests is straightforward and concise. The solutions
should be written quickly, because there is not much time available. Unlike in
traditional software engineering, the solutions are short (usually at most some
hundreds of lines) and it is not needed to maintain them after the contest.

1.1 Programming languages

At the moment, the most popular programming languages in contests are C++,
Python and Java. For example, in Google Code Jam 2016, among the best 3,000
participants, 73 % used C++, 15 % used Python and 10 % used Java1. Some
participants also used several languages.

Many people think that C++ is the best choice for a competitive programmer,
and C++ is nearly always available in contest systems. The benefits in using C++
are that it is a very efficient language and its standard library contains a large
collection of data structures and algorithms.

On the other hand, it is good to master several languages and know the
benefits of them. For example, if big integers are needed in the problem, Python

1https://www.go-hero.net/jam/16
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can be a good choice because it contains a built-in library for handling big
integers. Still, usually the goal is to write the problems so that the use of a
specific programming language is not an unfair advantage in the contest.

All examples in this book are written in C++, and the data structures and
algorithms in the standard library are often used. The book follows the C++11
standard, that can be used in most contests nowadays. If you can’t program in
C++ yet, now it is a good time to start learning.

C++ template

A typical C++ template for competitive programming looks like this:

#include <bits/stdc++.h>

using namespace std;

int main() {
// solution comes here

}

The #include line at the beginning of the code is a feature in the g++ compiler
that allows to include the whole standard library. Thus, it is not needed to
separately include libraries such as iostream, vector and algorithm, but they
are available automatically.

The using line determines that the classes and functions of the standard
library can be used directly in the code. Without the using line we should write,
for example, std::cout, but now it is enough to write cout.

The code can be compiled using the following command:

g++ -std=c++11 -O2 -Wall code.cpp -o code

This command produces a binary file code from the source code code.cpp.
The compiler obeys the C++11 standard (-std=c++11), optimizes the code (-O2)
and shows warnings about possible errors (-Wall).

1.2 Input and output

In most contests, standard streams are used for reading input and writing output.
In C++, the standard streams are cin for input and cout for output. In addition,
the C functions scanf and printf can be used.

The input for the program usually consists of numbers and strings that are
separated with spaces and newlines. They can be read from the cin stream as
follows:

int a, b;
string x;
cin >> a >> b >> x;
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This kind of code always works, assuming that there is at least one space or
one newline between each element in the input. For example, the above code
accepts both the following inputs:

123 456 apina

123 456
apina

The cout stream is used for output as follows:

int a = 123, b = 456;
string x = "apina";
cout << a << " " << b << " " << x << "\n";

Handling input and output is sometimes a bottleneck in the program. The
following lines at the beginning of the code make input and output more efficient:

ios_base::sync_with_stdio(0);
cin.tie(0);

Note that the newline "\n" works faster than endl, becauses endl always
causes a flush operation.

The C functions scanf and printf are an alternative to the C++ standard
streams. They are usually a bit faster, but they are also more difficult to use. The
following code reads two integers from the input:

int a, b;
scanf("%d %d", &a, &b);

The following code prints two integers:

int a = 123, b = 456;
printf("%d %d\n", a, b);

Sometimes the program should read a whole line from the input, possibly
with spaces. This can be accomplished using the getline function:

string s;
getline(cin, s);

If the amount of data is unknown, the following loop can be handy:

while (cin >> x) {
// koodia

}

This loop reads elements from the input one after another, until there is no more
data available in the input.
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In some contest systems, files are used for input and output. An easy solution
for this is to write the code as usual using standard streams, but add the following
lines to the beginning of the code:

freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);

After this, the code reads the input from the file ”input.txt” and writes the output
to the file ”output.txt”.

1.3 Handling numbers

Integers

The most popular integer type in competitive programming is int. This is a
32-bit type with value range −231 . . .231 −1, i.e., about −2 ·109 . . .2 ·109. If the
type int is not enough, the 64-bit type long long can be used, with value range
−263 . . .263 −1, i.e., about −9 ·1018 . . .9 ·1018.

The following code defines a long long variable:

long long x = 123456789123456789LL;

The suffix LL means that the type of the number is long long.
A typical error when using the type long long is that the type int is still

used somewhere in the code. For example, the following code contains a subtle
error:

int a = 123456789;
long long b = a*a;
cout << b << "\n"; // -1757895751

Even though the variable b is of type long long, both numbers in the expres-
sion a*a are of type int and the result is also of type int. Because of this, the
variable b will contain a wrong result. The problem can be solved by changing
the type of a to long long or by changing the expression to (long long)a*a.

Usually, the problems are written so that the type long long is enough. Still,
it is good to know that the g++ compiler also features an 128-bit type __int128_t
with value range −2127 . . .2127 −1, i.e., −1038 . . .1038. However, this type is not
available in all contest systems.

Modular arithmetic

We denote by x mod m the remainder when x is divided by m. For example,
17 mod 5= 2, because 17= 3 ·5+2.

Sometimes, the answer for a problem is a very big integer but it is enough
to print it ”modulo m”, i.e., the remainder when the answer is divided by m (for
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example, ”modulo 109 +7”). The idea is that even if the actual answer may be
very big, it is enough to use the types int and long long.

An important property of the remainder is that in addition, subtraction and
multiplication, the remainder can be calculated before the operation:

(a+b) mod m = (a mod m+b mod m) mod m
(a−b) mod m = (a mod m−b mod m) mod m
(a ·b) mod m = (a mod m ·b mod m) mod m

Thus, we can calculate the remainder after every operation and the numbers
will never become too large.

For example, the following code calculates n!, the factorial of n, modulo m:

long long x = 1;
for (int i = 2; i <= n i++) {

x = (x*i)%m;
}
cout << x << "\n";

Usually, the answer should be always given so that the remainder is between
0 . . .m−1. However, in C++ and other languages, the remainder of a negative
number can be negative. An easy way to make sure that this will not happen is
to first calculate the remainder as usual and then add m if the result is negative:

x = x%m;
if (x < 0) x += m;

However, this is only needed when there are subtractions in the code and the
remainder may become negative.

Floating point numbers

The usual floating point types in competitive programming are the 64-bit double
and, as an extension in the g++ compiler, the 80-bit long double. In most cases,
double is enough, but long double is more accurate.

The required precision of the answer is usually given. The easiest way is to
use the printf function that can be given the number of decimal places. For
example, the following code prints the value of x with 9 decimal places:

printf("%.9f\n", x);

A difficulty when using floating point numbers is that some numbers cannot
be represented accurately, but there will be rounding errors. For example, the
result of the following code is surprising:

double x = 0.3*3+0.1;
printf("%.20f\n", x); // 0.99999999999999988898
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Because of a rounding error, the value of x is a bit less than 1, while the
correct value would be 1.

It is risky to compare floating point numbers with the == operator, because
it is possible that the values should be equal but they are not due to rounding
errors. A better way to compare floating point numbers is to assume that two
numbers are equal if the difference between them is ε, where ε is a small number.

In practice, the numbers can be compared as follows (ε= 10−9):

if (abs(a-b) < 1e-9) {
// a and b are equal

}

Note that while floating point numbers are inaccurate, integers up to a certain
limit can be still represented accurately. For example, using double, it is possible
to accurately represent all integers having absolute value at most 253.

1.4 Shortening code

Short code is ideal in competitive programming, because the algorithm should be
implemented as fast as possible. Because of this, competitive programmers often
define shorter names for datatypes and other parts of code.

Type names

Using the command typedef it is possible to give a shorter name to a datatype.
For example, the name long long is long, so we can define a shorter name ll:

typedef long long ll;

After this, the code

long long a = 123456789;
long long b = 987654321;
cout << a*b << "\n";

can be shortened as follows:

ll a = 123456789;
ll b = 987654321;
cout << a*b << "\n";

The command typedef can also be used with more complex types. For exam-
ple, the following code gives the name vi for a vector of integers, and the name
pi for a pair that contains two integers.

typedef vector<int> vi;
typedef pair<int,int> pi;

8



Macros

Another way to shorten the code is to define macros. A macro means that certain
strings in the code will be changed before the compilation. In C++, macros are
defined using the command #define.

For example, we can define the following macros:

#define F first
#define S second
#define PB push_back
#define MP make_pair

After this, the code

v.push_back(make_pair(y1,x1));
v.push_back(make_pair(y2,x2));
int d = v[i].first+v[i].second;

can be shortened as follows:

v.PB(MP(y1,x1));
v.PB(MP(y2,x2));
int d = v[i].F+v[i].S;

It is also possible to define a macro with parameters which makes it possible
to shorten loops and other structures in the code. For example, we can define the
following macro:

#define REP(i,a,b) for (int i = a; i <= b; i++)

After this, the code

for (int i = 1; i <= n; i++) {
haku(i);

}

can be shortened as follows:

REP(i,1,n) {
haku(i);

}

1.5 Mathematics

Mathematics plays an important role in competitive programming, and it is not
possible to become a successful competitive programmer without good skills in
mathematics. This section covers some important mathematical concepts and
formulas that are needed later in the book.
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Sum formulas

Each sum of the form
n∑

x=1
xk = 1k +2k +3k + . . .+nk

where k is a positive integer, has a closed-form formula that is a polynomial of
degree k+1. For example,

n∑
x=1

x = 1+2+3+ . . .+n = n(n+1)
2

and
n∑

x=1
x2 = 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)

6
.

An arithmetic sum is a sum where the difference between any two consecu-
tive numbers is constant. For example,

3+7+11+15

is an arithmetic sum with constant 4. An arithmetic sum can be calculated using
the formula

n(a+b)
2

where a is the first number, b is the last number and n is the amount of numbers.
For example,

3+7+11+15= 4 · (3+15)
2

= 36.

The formula is based on the fact that the sum consists of n numbers and the
value of each number is (a+b)/2 on average.

A geometric sum is a sum where the ratio between any two consecutive
numbers is constant. For example,

3+6+12+24

is a geometric sum with constant 2. A geometric sum can be calculated using the
formula

bx−a
x−1

where a is the first number, b is the last number and the ratio between consecu-
tive numbers is x. For example,

3+6+12+24= 24 ·2−3
2−1

= 45.

This formula can be derived as follows. Let

S = a+ax+ax2 +·· ·+b.

By multiplying both sides by x, we get

xS = ax+ax2 +ax3 +·· ·+bx,

10



and solving the equation
xS−S = bx−a.

yields the formula.
A special case of a geometric sum is the formula

1+2+4+8+ . . .+2n−1 = 2n −1.

A harmonic sum is a sum of the form
n∑

x=1

1
x
= 1+ 1

2
+ 1

3
+ . . .+ 1

n
.

An upper bound for the harmonic sum is log2(n)+1. The reason for this is
that we can change each term 1/k so that k becomes a power of two that doesn’t
exceed k. For example, when n = 6, we can estimate the sum as follows:

1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
≤ 1+ 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

4
.

This upper bound consists of log2(n)+1 parts (1, 2 ·1/2, 4 ·1/4, etc.), and the sum
of each part is at most 1.

Set theory

A set is a collection of elements. For example, the set

X = {2,4,7}

contains elements 2, 4 and 7. The symbol ; denotes an empty set, and |S| denotes
the size of set S, i.e., the number of elements in the set. For example, in the
above set, |X | = 3.

If set S contains element x, we write x ∈ S, and otherwise we write x ∉ S. For
example, in the above set

4 ∈ X and 5 ∉ X .

New sets can be constructed as follows using set operations:

• The intersection A∩B consists of elements that are both in A and B. For
example, if A = {1,2,5} and B = {2,4}, then A∩B = {2}.

• The union A ∪B consists of elements that are in A or B or both. For
example, if A = {3,7} and B = {2,3,8}, then A∪B = {2,3,7,8}.

• The complement Ā consists of elements that are not in A. The interpre-
tation of a complement depends on the universal set that contains all
possible elements. For example, if A = {1,2,5,7} and the universal set is
P = {1,2, . . . ,10}, then Ā = {3,4,6,8,9,10}.

• The difference A \ B = A∩ B̄ consists of elements that are in A but not
in B. Note that B can contain elements that are not in A. For example, if
A = {2,3,7,8} and B = {3,5,8}, then A \ B = {2,7}.

If each element of A also belongs to S, we say that A is a subset of S, denoted
by A ⊂ S. Set S always has 2|S| subsets, including the empty set. For example,
the subsets of the set {2,4,7} are

11



;, {2}, {4}, {7}, {2,4}, {2,7}, {4,7} ja {2,4,7}.

Often used sets are

• N (natural numbers),
• Z (integers),
• Q (rational numbers) and
• R (real numbers).

The set N of natural numbers can be defined in two ways, depending on the
situation: either N= {0,1,2, . . .} or N= {1,2,3, ...}.

We can also construct a set using a rule of the form

{ f (n) : n ∈ S},

where f (n) is some function. This set contains all elements f (n) where n is an
element in S. For example, the set

X = {2n : n ∈Z}

contains all even integers.

Logic

The value of a logical expression is either true (1) or false (0). The most impor-
tant logical operators are ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒
(implication) and ⇔ (equivalence). The following table shows the meaning of
the operators:

A B ¬A ¬B A∧B A∨B A ⇒ B A ⇔ B
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 1

The negation ¬A reverses the value of an expression. The expression A∧B is
true if both A and B are true, and the expression A∨B is true if A or B or both
are true. The expression A ⇒ B is true if whenever A is true, also B is true. The
expression A ⇔ B is true if A and B are both true or both false.

A predicate is an expression that is true or false depending on its parameters.
Predicates are usually denoted by capital letters. For example, we can define
a predicate P(x) that is true exactly when x is a prime number. Using this
definition, P(7) is true but P(8) is false.

A quantifier connects a logical expression to elements in a set. The most
important quantifiers are ∀ (for all) and ∃ (there is). For example,

∀x(∃y(y< x))

12



means that for each element x in the set, there is an element y in the set such
that y is smaller than x. This is true in the set of integers, but false in the set of
natural numbers.

Using the notation described above, we can express many kinds of logical
propositions. For example,

∀x((x > 2∧¬P(x))⇒ (∃a(∃b(x = ab∧a > 1∧b > 1))))

means that if a number x is larger than 2 and not a prime number, there are
numbers a and b that are larger than 1 and whose product is x. This proposition
is true in the set of integers.

Functions

The function bxc rounds the number x down to an integer, and the function dxe
rounds the number x up to an integer. For example,

b3/2c = 1 and d3/2e = 2.

The functions min(x1, x2, . . . , xn) and max(x1, x2, . . . , xn) return the smallest
and the largest of values x1, x2, . . . , xn. For example,

min(1,2,3)= 1 and max(1,2,3)= 3.

The factorial n! is defined

n∏
x=1

x = 1 ·2 ·3 · . . . ·n

or recursively
0! = 1
n! = n · (n−1)!

The Fibonacci numbers arise in several situations. They can be defined
recursively as follows:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)

The first Fibonacci numbers are

0,1,1,2,3,5,8,13,21,34,55, . . .

There is also a closed-form formula for calculating Fibonacci numbers:

f (n)= (1+p
5)n − (1−p

5)n

2n
p

5
.

13



Logarithm

The logarithm of a number x is denoted logk(x) where k is the base of the
logarithm. The logarithm is defined so that logk(x)= a exactly when ka = x.

A useful interpretation in algorithmics is that logk(x) equals the number of
times we have to divide x by k before we reach the number 1. For example,
log2(32)= 5 because 5 divisions are needed:

32→ 16→ 8→ 4→ 2→ 1

Logarithms are often needed in the analysis of algorithms because many
efficient algorithms divide in half something at each step. Thus, we can estimate
the efficiency of those algorithms using the logarithm.

The logarithm of a product is

logk(ab)= logk(a)+ logk(b),

and consequently,
logk(xn)= n · logk(x).

In addition, the logarithm of a quotient is

logk

(a
b

)
= logk(a)− logk(b).

Another useful formula is
logu(x)= logk(x)

logk(u)
,

and using this, it is possible to calculate logarithms to any base if there is a way
to calculate logarithms to some fixed base.

The natural logarithm ln(x) of a number x is a logarithm whose base is
e ≈ 2,71828.

Another property of the logarithm is that the number of digits of a number x
in base b is blogb(x)+1c. For example, the representation of the number 123 in
base 2 is 1111011 and blog2(123)+1c = 7.
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Chapter 2

Time complexity

The efficiency of algorithms is important in competitive programming. Usually,
it is easy to design an algorithm that solves the problem slowly, but the real
challenge is to invent a fast algorithm. If an algorithm is too slow, it will get only
partial points or no points at all.

The time complexity of an algorithm estimates how much time the algo-
rithm will use for some input. The idea is to represent the efficiency as an function
whose parameter is the size of the input. By calculating the time complexity, we
can estimate if the algorithm is good enough without implementing it.

2.1 Calculation rules

The time complexity of an algorithm is denoted O(· · · ) where the three dots
represent some function. Usually, the variable n denotes the input size. For
example, if the input is an array of numbers, n will be the size of the array, and if
the input is a string, n will be the length of the string.

Loops

The typical reason why an algorithm is slow is that it contains many loops that
go through the input. The more nested loops the algorithm contains, the slower
it is. If there are k nested loops, the time complexity is O(nk).

For example, the time complexity of the following code is O(n):

for (int i = 1; i <= n; i++) {
// code

}

Correspondingly, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

// code
}

}
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Order of magnitude

A time complexity doesn’t tell the exact number of times the code inside a loop is
executed, but it only tells the order of magnitude. In the following examples, the
code inside the loop is executed 3n, n+5 and dn/2e times, but the time complexity
of each code is O(n).

for (int i = 1; i <= 3*n; i++) {
// code

}

for (int i = 1; i <= n+5; i++) {
// code

}

for (int i = 1; i <= n; i += 2) {
// code

}

As another example, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {
for (int j = i+1; j <= n; j++) {

// code
}

}

Phases

If the code consists of consecutive phases, the total time complexity is the largest
time complexity of a single phase. The reason for this is that the slowest phase is
usually the bottleneck of the code and the other phases are not important.

For example, the following code consists of three phases with time complexities
O(n), O(n2) and O(n). Thus, the total time complexity is O(n2).

for (int i = 1; i <= n; i++) {
// code

}
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
// code

}
}
for (int i = 1; i <= n; i++) {

// code
}

16



Several variables

Sometimes the time complexity depends on several variables. In this case, the
formula for the time complexity contains several variables.

For example, the time complexity of the following code is O(nm):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {

// code
}

}

Recursion

The time complexity of a recursive function depends on the number of times
the function is called and the time complexity of a single call. The total time
complexity is the product of these values.

For example, consider the following function:

void f(int n) {
if (n == 1) return;
f(n-1);

}

The call f(n) causes n function calls, and the time complexity of each call is O(1).
Thus, the total time complexity is O(n).

As another example, consider the following function:

void g(int n) {
if (n == 1) return;
g(n-1);
g(n-1);

}

In this case the function branches into two parts. Thus, the call g(n) causes the
following calls:

call amount
g(n) 1

g(n−1) 2
· · · · · ·

g(1) 2n−1

Based on this, the time complexity is

1+2+4+·· ·+2n−1 = 2n −1=O(2n).
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2.2 Complexity classes

Typical complexity classes are:

O(1) The running time of a constant-time algorithm doesn’t depend on the
input size. A typical constant-time algorithm is a direct formula that
calculates the answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
reason for this is that the logarithm log2 n equals the number of times n
must be divided by 2 to produce 1.

O(
p

n) The running time of this kind of algorithm is between O(logn) and O(n).
A special feature of the square root is that

p
n = n/

p
n, so the square root

lies ”in the middle” of the input.

O(n) A linear algorithm goes through the input a constant number of times.
This is often the best possible time complexity because it is usually needed
to access each input element at least once before reporting the answer.

O(n logn) This time complexity often means that the algorithm sorts the input
because the time complexity of efficient sorting algorithms is O(n logn).
Another possibility is that the algorithm uses a data structure where the
time complexity of each operation is O(logn).

O(n2) A quadratic algorithm often contains two nested loops. It is possible to
go through all pairs of input elements in O(n2) time.

O(n3) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of input elements in O(n3) time.

O(2n) This time complexity often means that the algorithm iterates through all
subsets of the input elements. For example, the subsets of {1,2,3} are ;, {1},
{2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}.

O(n!) This time complexity often means that the algorithm iterates trough all
permutations of the input elements. For example, the permutations of
{1,2,3} are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

An algorithm is polynomial if its time complexity is at most O(nk) where k is
a constant. All the above time complexities except O(2n) and O(n!) are polynomial.
In practice, the constant k is usually small, and therefore a polynomial time
complexity roughly means that the algorithm is efficient.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems for
which no polynomial algorithm is known.
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2.3 Estimating efficiency

By calculating the time complexity, it is possible to check before the implementa-
tion that an algorithm is efficient enough for the problem. The starting point for
the estimation is the fact that a modern computer can perform some hundreds of
millions of operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 105. If the time complexity is O(n2), the algorithm will perform
about (105)2 = 1010 operations. This should take some tens of seconds time, so
the algorithm seems to be too slow for solving the problem.

On the other hand, given the input size, we can try to guess the desired time
complexity of the algorithm that solves the problem. The following table contains
some useful estimates assuming that the time limit is one second.

input size (n) desired time complexity
n ≤ 1018 O(1) or O(logn)
n ≤ 1012 O(

p
n)

n ≤ 106 O(n) or O(n logn)
n ≤ 5000 O(n2)
n ≤ 500 O(n3)
n ≤ 25 O(2n)
n ≤ 10 O(n!)

For example, if the input size is n = 105, it is probably expected that the time
complexity of the algorithm should be O(n) or O(n logn). This information makes
it easier to design an algorithm because it rules out approaches that would yield
an algorithm with a slower time complexity.

Still, it is important to remember that a time complexity doesn’t tell every-
thing about the efficiency because it hides the constant factors. For example,
an algorithm that runs in O(n) time can perform n/2 or 5n operations. This has
an important effect on the actual running time of the algorithm.

2.4 Maximum subarray sum

There are often several possible algorithms for solving a problem with different
time complexities. This section discusses a classic problem that has a straightfor-
ward O(n3) solution. However, by designing a better algorithm it is possible to
solve the problem in O(n2) time and even in O(n) time.

Given an array of n integers x1, x2, . . . , xn, our task is to find the maximum
subarray sum, i.e., the largest possible sum of numbers in a contiguous region
in the array. The problem is interesting because there may be negative numbers
in the array. For example, in the array

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

19



the following subarray produces the maximum sum 10:

−1 2 4 −3 5 2 −5 2

1 2 3 4 5 6 7 8

Solution 1

A straightforward solution for the problem is to go through all possible ways to
select a subarray, calculate the sum of numbers in each subarray and maintain
the maximum sum. The following code implements this algorithm:

int p = 0;
for (int a = 1; a <= n; a++) {

for (int b = a; b <= n; b++) {
int s = 0;
for (int c = a; c <= b; c++) {

s += x[c];
}
p = max(p,s);

}
}
cout << p << "\n";

The code assumes that the numbers are stored in array x with indices 1 . . .n.
Variables a and b select the first and last number in the subarray, and the sum of
the subarray is calculated to variable s. Variable p contains the maximum sum
found during the search.

The time complexity of the algorithm is O(n3) because it consists of three
nested loops and each loop contains O(n) steps.

Solution 2

It is easy to make the first solution more efficient by removing one loop. This is
possible by calculating the sum at the same time when the right border of the
subarray moves. The result is the following code:

int p = 0;
for (int a = 1; a <= n; a++) {

int s = 0;
for (int b = a; b <= n; b++) {

s += x[b];
p = max(p,s);

}
}
cout << p << "\n";

After this change, the time complexity is O(n2).
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Solution 3

Surprisingly, it is possible to solve the problem in O(n) time which means that
we can remove one more loop. The idea is to calculate for each array index the
maximum subarray sum that ends to that index. After this, the answer for the
problem is the maximum of those sums.

Condider the subproblem of finding the maximum subarray for a fixed ending
index k. There are two possibilities:

1. The subarray only contains the element at index k.

2. The subarray consists of a subarray that ends to index k−1, followed by
the element at index k.

Our goal is to find a subarray with maximum sum, so in case 2 the subarray
that ends to index k−1 should also have the maximum sum. Thus, we can solve
the problem efficiently when we calculate the maximum subarray sum for each
ending index from left to right.

The following code implements the solution:

int p = 0, s = 0;
for (int k = 1; k <= n; k++) {

s = max(x[k],s+x[k]);
p = max(p,s);

}
cout << p << "\n";

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to access all array elements at least once.

Efficiency comparison

It is interesting to study how efficient the algorithms are in practice. The follow-
ing table shows the running times of the above algorithms for different values of
n in a modern computer.

In each test, the input was generated randomly. The time needed for reading
the input was not measured.

array size n solution 1 solution 2 solution 3
102 0,0 s 0,0 s 0,0 s
103 0,1 s 0,0 s 0,0 s
104 > 10,0 s 0,1 s 0,0 s
105 > 10,0 s 5,3 s 0,0 s
106 > 10,0 s > 10,0 s 0,0 s
107 > 10,0 s > 10,0 s 0,0 s

The comparison shows that all algorithms are efficient when the input size
is small, but larger inputs bring out remarkable differences in running times of
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the algorithms. The O(n3) time solution 1 becomes slower when n = 103, and the
O(n2) time solution 2 becomes slower when n = 104. Only the O(n) time solution
3 solves even the largest inputs instantly.
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Chapter 3

Sorting

Sorting is a fundamental algorithm design problem. In addition, many efficient
algorithms use sorting as a subroutine, because it is often easier to process data
if the elements are in a sorted order.

For example, the question ”does the array contain two equal elements?” is
easy to solve using sorting. If the array contains two equal elements, they will
be next to each other after sorting, so it is easy to find them. Also the question
”what is the most frequent element in the array?” can be solved similarly.

There are many algorithms for sorting, that are also good examples of al-
gorithm design techniques. The efficient general sorting algorithms work in
O(n logn) time, and many algorithms that use sorting as a subroutine also have
this time complexity.

3.1 Sorting theory
The basic problem in sorting is as follows:

Given an array that contains n elements, your task is to sort the elements in
increasing order.

For example, the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

will be as follows after sorting:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

O(n2) algorithms

Simple algorithms for sorting an array work in O(n2) time. Such algorithms are
short and usually consist of two nested loops. A famous O(n2) time algorithm
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for sorting is bubble sort where the elements ”bubble” forward in the array
according to their values.

Bubble sort consists of n−1 rounds. On each round, the algorithm iterates
through the elements in the array. Whenever two successive elements are found
that are not in correct order, the algorithm swaps them. The algorithm can be
implemented as follows for array t[1],t[2], . . . ,t[n]:

for (int i = 1; i <= n-1; i++) {
for (int j = 1; j <= n-i; j++) {

if (t[j] > t[j+1]) swap(t[j],t[j+1]);
}

}

After the first round of the algorithm, the largest element is in the correct
place, after the second round the second largest element is in the correct place,
etc. Thus, after n−1 rounds, all elements will be sorted.

For example, in the array

1 3 8 2 9 2 5 6

1 2 3 4 5 6 7 8

the first round of bubble sort swaps elements as follows:

1 3 2 8 9 2 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 9 5 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 9 6

1 2 3 4 5 6 7 8

1 3 2 8 2 5 6 9

1 2 3 4 5 6 7 8

Inversions

Bubble sort is an example of a sorting algorithm that always swaps successive
elements in the array. It turns out that the time complexity of this kind of an
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algorithm is always at least O(n2) because in the worst case, O(n2) swaps are
required for sorting the array.

A useful concept when analyzing sorting algorithms is an inversion. It is a
pair of elements (t[a],t[b]) in the array such that a < b and t[a]> t[b], i.e., they
are in wrong order. For example, in the array

1 2 2 6 3 5 9 8

1 2 3 4 5 6 7 8

the inversions are (6,3), (6,5) and (9,8). The number of inversions indicates how
sorted the array is. An array is completely sorted when there are no inversions.
On the other hand, if the array elements are in reverse order, the number of
inversions is maximum:

1+2+·· ·+ (n−1)= n(n−1)
2

=O(n2)

Swapping successive elements that are in wrong order removes exactly one
inversion from the array. Thus, if a sorting algorithm can only swap successive
elements, each swap removes at most one inversion and the time complexity of
the algorithm is at least O(n2).

O(n logn) algorithms

It is possible to sort an array efficiently in O(n logn) time using an algorithm that
is not limited to swapping successive elements. One such algorithm is mergesort
that sorts an array recursively by dividing it into smaller subarrays.

Mergesort sorts the subarray [a,b] as follows:

1. If a = b, don’t do anything because the subarray is already sorted.

2. Calculate the index of the middle element: k = b(a+b)/2c.
3. Recursively sort the subarray [a,k].

4. Recursively sort the subarray [k+1,b].

5. Merge the sorted subarrays [a,k] and [k+1,b] into a sorted subarray [a,b].

Mergesort is an efficient algorithm because it halves the size of the subarray
at each step. The recursion consists of O(logn) levels, and processing each level
takes O(n) time. Merging the subarrays [a,k] and [k+1,b] is possible in linear
time because they are already sorted.

For example, consider sorting the following array:

1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

The array will be divided into two subarrays as follows:
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1 3 6 2 8 2 5 9

1 2 3 4 5 6 7 8

Then, the subarrays will be sorted recursively as follows:

1 2 3 6 2 5 8 9

1 2 3 4 5 6 7 8

Finally, the algorithm merges the sorted subarrays and creates the final
sorted array:

1 2 2 3 5 6 8 9

1 2 3 4 5 6 7 8

Sorting lower bound

Is it possible to sort an array faster than in O(n logn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by examining the sort-
ing as a process where each comparison of two elements gives more information
about the contents of the array. The process creates the following tree:

x < y?

x < y? x < y?

x < y? x < y? x < y? x < y?

Here ”x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to order the array, a total of n! ways. For this reason, the
height of the tree must be at least

log2(n!)= log2(1)+ log2(2)+·· ·+ log2(n).

We get an lower bound for this sum by choosing last n/2 elements and changing
the value of each element to log2(n/2). This yields an estimate

log2(n!)≥ (n/2) · log2(n/2),

so the height of the tree and the minimum possible number of steps in an sorting
algorithm in the worst case is at least n logn.
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Counting sort

The lower bound n logn doesn’t apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is
counting sort that sorts an array in O(n) time assuming that every element in
the array is an integer between 0 . . . c where c is a small constant.

The algorithm creates a bookkeeping array whose indices are elements in the
original array. The algorithm iterates through the original array and calculates
how many times each element appears in the array.

For example, the array

1 3 6 9 9 3 5 9

1 2 3 4 5 6 7 8

produces the following bookkeeping array:

1 0 2 0 1 1 0 0 3

1 2 3 4 5 6 7 8 9

For example, the value of element 3 in the bookkeeping array is 2, because
the element 3 appears two times in the original array (indices 2 and 6).

The construction of the bookkeeping array takes O(n) time. After this, the
sorted array can be created in O(n) time because the amount of each element
can be retrieved from the bookkeeping array. Thus, the total time complexity of
counting sort is O(n).

Counting sort is a very efficient algorithm but it can only be used when the
constant c is so small that the array elements can be used as indices in the
bookkeeping array.

3.2 Sorting in C++
It is almost never a good idea to use an own implementation of a sorting algorithm
in a contest, because there are good implementations available in programming
languages. For example, the C++ standard library contains the function sort
that can be easily used for sorting arrays and other data structures.

There are many benefits in using a library function. First, it saves time
because there is no need to implement the function. In addition, the library
implementation is certainly correct and efficient: it is not probable that a home-
made sorting function would be better.

In this section we will see how to use the C++ sort function. The following
code sorts the numbers in vector t in increasing order:

vector<int> v = {4,2,5,3,5,8,3};
sort(v.begin(),v.end());

After the sorting, the contents of the vector will be [2,3,3,4,5,5,8]. The default
sorting order in increasing, but a reverse order is possible as follows:

27



sort(v.rbegin(),v.rend());

A regular array can be sorted as follows:

int n = 7; // array size
int t[] = {4,2,5,3,5,8,3};
sort(t,t+n);

The following code sorts the string s:

string s = "monkey";
sort(s.begin(), s.end());

Sorting a string means that the characters in the string are sorted. For example,
the string ”monkey” becomes ”ekmnoy”.

Comparison operator

The function sort requires that a comparison operator is defined for the data
type of the elements to be sorted. During the sorting, this operator will be used
whenever it is needed to find out the order of two elements.

Most C++ data types have a built-in comparison operator and elements of
those types can be sorted automatically. For example, numbers are sorted accord-
ing to their values and strings are sorted according to alphabetical order.

Pairs (pair) are sorted primarily by the first element (first). However, if
the first elements of two pairs are equal, they are sorted by the second element
(second):

vector<pair<int,int>> v;
v.push_back({1,5});
v.push_back({2,3});
v.push_back({1,2});
sort(v.begin(), v.end());

After this, the order of the pairs is (1,2), (1,5) and (2,3).
Correspondingly, tuples (tuple) are sorted primarily by the first element,

secondarily by the second element, etc.:

vector<tuple<int,int,int>> v;
v.push_back(make_tuple(2,1,4));
v.push_back(make_tuple(1,5,3));
v.push_back(make_tuple(2,1,3));
sort(v.begin(), v.end());

After this, the order of the tuples is (1,5,3), (2,1,3) and (2,1,4).
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User-defined structs

User-defined structs do not have a comparison operator automatically. The
operator should be defined inside the struct as a function operator< whose
parameter is another element of the same type. The operator should return true
if the element is smaller than the parameter, and false otherwise.

For example, the following struct P contains the x and y coordinate of a point.
The comparison operator is defined so that the points are sorted primarily by the
x coordinate and secondarily by the y coordinate.

struct P {
int x, y;
bool operator<(const P &p) {

if (x != p.x) return x < p.x;
else return y < p.y;

}
};

Comparison function

It is also possible to give an external comparison function to the sort function
as a callback function. For example, the following comparison function sorts
strings primarily by length and secondarily by alphabetical order:

bool cmp(string a, string b) {
if (a.size() != b.size()) return a.size() < b.size();
return a < b;

}

Now a vector of strings can be sorted as follows:

sort(v.begin(), v.end(), cmp);

3.3 Binary search

A general method for searching for an element in an array is to use a for loop
that iterates through all elements in the array. For example, the following code
searches for an element x in array t:

for (int i = 1; i <= n; i++) {
if (t[i] == x) // x found at index i

}

The time complexity of this approach is O(n) because in the worst case, we
have to check all elements in the array. If the array can contain any elements,
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this is also the best possible approach because there is no additional information
available where in the array we should search for the element x.

However, if the array is sorted, the situation is different. In this case it is
possible to perform the search much faster, because the order of the elements in
the array guides us. The following binary search algorithm efficiently searches
for an element in a sorted array in O(logn) time.

Method 1

The traditional way to implement binary search resembles looking for a word in
a dictionary. At each step, the search halves the active region in the array, until
the desired element is found, or it turns out that there is no such element.

First, the search checks the middle element in the array. If the middle element
is the desired element, the search terminates. Otherwise, the search recursively
continues to the left half or to the right half of the array, depending on the value
of the middle element.

The above idea can be implemented as follows:

int a = 1, b = n;
while (a <= b) {

int k = (a+b)/2;
if (t[k] == x) // x found at index k
if (t[k] > x) b = k-1;
else a = k+1;

}

The algorithm maintains a range a . . .b that corresponds to the active region
in the array. Initially, the range is 1 . . .n, the whole array. The algorithm halves
the size of the range at each step, so the time complexity is O(logn).

Method 2

An alternative method for implementing binary search is based on a more efficient
way to iterate through the elements in the array. The idea is to make jumps and
slow the speed when we get closer to the desired element.

The search goes through the array from the left to the right, and the initial
jump length is n/2. At each step, the jump length will be halved: first n/4, then
n/8, n/16, etc., until finally the length is 1. After the jumps, either the desired
element has been found or we know that it doesn’t exist in the array.

The following code implements the above idea:

int k = 1;
for (int b = n/2; b >= 1; b /= 2) {

while (k+b <= n && t[k+b] <= x) k += b;
}
if (t[k] == x) // x was found at index k
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Variable k is the position in the array, and variable b is the jump length. If
the array contains the element x, the index of the element will be in variable k
after the search. The time complexity of the algorithm is O(logn), because the
code in the while loop is performed at most twice for each jump length.

Finding the smallest solution

In practice, it is seldom needed to implement binary search for array search,
because we can use the standard library instead. For example, the C++ functions
lower_bound and upper_bound implement binary search, and the data structure
set maintains a set of elements with O(logn) time operations.

However, an important use for binary search is to find a position where the
value of a function changes. Suppose that we wish to find the smallest value k
that is a valid solution for a problem. We are given a function ok(x) that returns
true if x is a valid solution and false otherwise. In addition, we know that ok(x)
is false when x < k and true when x ≥ k. The situation looks as follows:

x 0 1 · · · k−1 k k+1 · · ·
ok(x) false false · · · false true true · · ·

The value k can be found using binary search:

int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (!ok(x+b)) x += b;
}
int k = x+1;

The search finds the largest value of x for which ok(x) is false. Thus, the
next value k = x+1 is the smallest possible value for which ok(k) is true. The
initial jump length z has to be large enough, for example some value for which
we know beforehand that ok(z) is true.

The algorithm calls the function ok O(log z) times, so the total time complexity
depends on the function ok. For example, if the function works in O(n) time, the
total time complexity becomes O(n log z).

Finding the maximum value

Binary search can also be used for finding the maximum value for a function that
is first increasing and then decreasing. Our task is to find a value k such that

• f (x)< f (x+1) when x < k, and

• f (x)> f (x+1) when x >= k.

The idea is to use binary search for finding the largest value of x for which
f (x)< f (x+1). This implies that k = x+1 because f (x+1)> f (x+2). The following
code implements the search:
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int x = -1;
for (int b = z; b >= 1; b /= 2) {

while (f(x+b) < f(x+b+1)) x += b;
}
int k = x+1;

Note that unlike in the regular binary search, here it is not allowed that
successive values of the function are equal. In this case it would not be possible
to know how to continue the search.
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Chapter 4

Data structures

A data structure is a way to store data in the memory of the computer. It is
important to choose a suitable data structure for a problem, because each data
structure has its own advantages and disadvantages. The crucial question is:
which operations are efficient in the chosen data structure?

This chapter introduces the most important data structures in the C++ stan-
dard library. It is a good idea to use the standard library whenever possible,
because it will save a lot of time. Later in the book we will learn more sophisti-
cated data structures that are not available in the standard library.

4.1 Dynamic array

A dynamic array is an array whose size can be changed during the execution
of the code. The most popular dynamic array in C++ is the vector structure
(vector), that can be used almost like a regular array.

The following code creates an empty vector and adds three elements to it:

vector<int> v;
v.push_back(3); // [3]
v.push_back(2); // [3,2]
v.push_back(5); // [3,2,5]

After this, the elements can be accessed like in a regular array:

cout << v[0] << "\n"; // 3
cout << v[1] << "\n"; // 2
cout << v[2] << "\n"; // 5

The function size returns the number of elements in the vector. The following
code iterates through the vector and prints all elements in it:

for (int i = 0; i < v.size(); i++) {
cout << v[i] << "\n";

}
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A shorter way to iterate trough a vector is as follows:

for (auto x : v) {
cout << x << "\n";

}

The function back returns the last element in the vector, and the function
pop_back removes the last element:

vector<int> v;
v.push_back(5);
v.push_back(2);
cout << v.back() << "\n"; // 2
v.pop_back();
cout << v.back() << "\n"; // 5

The following code creates a vector with five elements:

vector<int> v = {2,4,2,5,1};

Another way to create a vector is to give the number of elements and the
initial value for each element:

// size 10, initial value 0
vector<int> v(10);

// size 10, initial value 5
vector<int> v(10, 5);

The internal implementation of the vector uses a regular array. If the size of
the vector increases and the array becomes too small, a new array is allocated
and all the elements are copied to the new array. However, this doesn’t happen
often and the time complexity of push_back is O(1) on average.

Also the string structure (string) is a dynamic array that can be used almost
like a vector. In addition, there is special syntax for strings that is not available in
other data structures. Strings can be combined using the + symbol. The function
substr(k, x) returns the substring that begins at index k and has length x. The
function find(t) finds the position where a substring t appears in the string.

The following code presents some string operations:

string a = "hatti";
string b = a+a;
cout << b << "\n"; // hattihatti
b[5] = ’v’;
cout << b << "\n"; // hattivatti
string c = b.substr(3,4);
cout << c << "\n"; // tiva
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4.2 Set structure

A set is a data structure that contains a collection of elements. The basic
operations in a set are element insertion, search and removal.

C++ contains two set implementations: set and unordered_set. The struc-
ture set is based on a balanced binary tree and the time complexity of its
operations is O(logn). The structure unordered_set uses a hash table, and the
time complexity of its operations is O(1) on average.

The choice which set implementation to use is often a matter of taste. The
benefit in the set structure is that it maintains the order of the elements and
provides functions that are not available in unordered_set. On the other hand,
unordered_set is often more efficient.

The following code creates a set that consists of integers, and shows how
to use it. The function insert adds an element to the set, the function count
returns how many times an element appears in the set, and the function erase
removes an element from the set.

set<int> s;
s.insert(3);
s.insert(2);
s.insert(5);
cout << s.count(3) << "\n"; // 1
cout << s.count(4) << "\n"; // 0
s.erase(3);
s.insert(4);
cout << s.count(3) << "\n"; // 0
cout << s.count(4) << "\n"; // 1

A set can be used mostly like a vector, but it is not possible to access the
elements using the [] notation. The following code creates a set, prints the
number of elements in it, and then iterates through all the elements:

set<int> s = {2,5,6,8};
cout << s.size() << "\n"; // 4
for (auto x : s) {

cout << x << "\n";
}

An important property of a set is that all the elements are distinct. Thus, the
function count always returns either 0 (the element is not in the set) or 1 (the
element is in the set), and the function insert never adds an element to the set
if it is already in the set. The following code illustrates this:

set<int> s;
s.insert(5);
s.insert(5);
s.insert(5);
cout << s.count(5) << "\n"; // 1
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C++ also contains the structures multiset and unordered_multiset that
work otherwise like set and unordered_set but they can contain multiple copies
of an element. For example, in the following code all copies of the number 5 are
added to the set:

multiset<int> s;
s.insert(5);
s.insert(5);
s.insert(5);
cout << s.count(5) << "\n"; // 3

The function erase removes all instances of an element from a multiset:

s.erase(5);
cout << s.count(5) << "\n"; // 0

Often, only one instance should be removed, which can be done as follows:

s.erase(s.find(5));
cout << s.count(5) << "\n"; // 2

4.3 Map structure

A map is a generalized array that consists of key-value-pairs. While the keys in
a regular array are always the successive integers 0,1, . . . ,n−1, where n is the
size of the array, the keys in a map can be of any data type and they don’t have to
be successive values.

C++ contains two map implementations that correspond to the set implemen-
tations: the structure map is based on a balanced binary tree and accessing an
element takes O(logn) time, while the structure unordered_map uses a hash map
and accessing an element takes O(1) time on average.

The following code creates a map where the keys are strings and the values
are integers:

map<string,int> m;
m["monkey"] = 4;
m["banana"] = 3;
m["harpsichord"] = 9;
cout << m["banana"] << "\n"; // 3

If a value of a key is requested but the map doesn’t contain it, the key
is automatically added to the map with a default value. For example, in the
following code, the key ”aybabtu” with value 0 is added to the map.

map<string,int> m;
cout << m["aybabtu"] << "\n"; // 0
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The function count determines if a key exists in the map:

if (m.count("aybabtu")) {
cout << "key exists in the map";

}

The following code prints all keys and values in the map:

for (auto x : m) {
cout << x.first << " " << x.second << "\n";

}

4.4 Iterators and ranges
Many functions in the C++ standard library are given iterators to data structures,
and iterators often correspond to ranges. An iterator is a variable that points to
an element in a data structure.

Often used iterators are begin and end that define a range that contains all
elements in a data structure. The iterator begin points to the first element in the
data structure, and the iterator end points to the position after the last element.
The situation looks as follows:

{ 3, 4, 6, 8, 12, 13, 14, 17 }
↑ ↑
s.begin() s.end()

Note the asymmetry in the iterators: s.begin() points to an element in the
data structure, while s.end() points outside the data structure. Thus, the range
defined by the iterators is half-open.

Handling ranges

Iterators are used in C++ standard library functions that work with ranges of
data structures. Usually, we want to process all elements in a data structure, so
the iterators begin and end are given for the function.

For example, the following code sorts a vector using the function sort, then
reverses the order of the elements using the function reverse, and finally shuffles
the order of the elements using the function random_shuffle.

sort(v.begin(), v.end());
reverse(v.begin(), v.end());
random_shuffle(v.begin(), v.end());

These functions can also be used with a regular array. In this case, the
functions are given pointers to the array instead of iterators:
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sort(t, t+n);
reverse(t, t+n);
random_shuffle(t, t+n);

Set iterators

Iterators are often used when accessing elements in a set. The following code
creates an iterator it that points to the first element in the set:

set<int>::iterator it = s.begin();

A shorter way to write the code is as follows:

auto it = s.begin();

The element to which an iterator points can be accessed through the * symbol.
For example, the following code prints the first element in the set:

auto it = s.begin();
cout << *it << "\n";

Iterators can be moved using operators ++ (forward) and –- (backward),
meaning that the iterator moves to the next or previous element in the set.

The following code prints all elements in the set:

for (auto it = s.begin(); it != s.end(); it++) {
cout << *it << "\n";

}

The following code prints the last element in the set:

auto it = s.end();
it--;
cout << *it << "\n";

The function find(x) returns an iterator that points to an element whose
value is x. However, if the set doesn’t contain x, the iterator will be end.

auto it = s.find(x);
if (it == s.end()) cout << "x is missing";

The function lower_bound(x) returns an iterator to the smallest element in
the set whose value is at least x. Correspondingly, the function upper_bound(x)
returns an iterator to the smallest element in the set whose value is larger than
x. If such elements do not exist, the return value of the functions will be end.
These functions are not supported by the unordered_set structure that doesn’t
maintain the order of the elements.

For example, the following code finds the element nearest to x:
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auto a = s.lower_bound(x);
if (a == s.begin() && a == s.end()) {

cout << "joukko on tyhjä\n";
} else if (a == s.begin()) {

cout << *a << "\n";
} else if (a == s.end()) {

a--;
cout << *a << "\n";

} else {
auto b = a; b--;
if (x-*b < *a-x) cout << *b << "\n";
else cout << *a << "\n";

}

The code goes through all possible cases using the iterator a. First, the iterator
points to the smallest element whose value is at least x. If a is both begin and
end at the same time, the set is empty. If a equals begin, the corresponding
element is nearest to x. If a equals end, the last element in the set is nearest
to x. If none of the previous cases is true, the element nearest to x is either the
element that corresponds to a or the previous element.

4.5 Other structures

Bitset

A bitset (bitset) is an array where each element is either 0 or 1. For example,
the following code creates a bitset that contains 10 elements:

bitset<10> s;
s[2] = 1;
s[5] = 1;
s[6] = 1;
s[8] = 1;
cout << s[4] << "\n"; // 0
cout << s[5] << "\n"; // 1

The benefit in using a bitset is that it requires less memory than a regular
array, because each element in the bitset only uses one bit of memory. For
example, if n bits are stored as an int array, 32n bits of memory will be used,
but a corresponding bitset only requires n bits of memory. In addition, the values
in a bitset can be efficiently manipulated using bit operators, which makes it
possible to optimize algorithms.

The following code shows another way to create a bitset:

bitset<10> s(string("0010011010"));
cout << s[4] << "\n"; // 0
cout << s[5] << "\n"; // 1
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The function count returns the number of ones in the bitset:

bitset<10> s(string("0010011010"));
cout << s.count() << "\n"; // 4

The following code shows examples of using bit operations:

bitset<10> a(string("0010110110"));
bitset<10> b(string("1011011000"));
cout << (a&b) << "\n"; // 0010010000
cout << (a|b) << "\n"; // 1011111110
cout << (a^b) << "\n"; // 1001101110

Pakka

A deque (deque) is a dynamic array whose size can be changed at both ends of
the array. Like a vector, a deque contains functions push_back and pop_back,
but it also contains additional functions push_front and pop_front that are not
available in a vector.

A deque can be used as follows:

deque<int> d;
d.push_back(5); // [5]
d.push_back(2); // [5,2]
d.push_front(3); // [3,5,2]
d.pop_back(); // [3,5]
d.pop_front(); // [5]

The internal implementation of a deque is more complex than the implemen-
tation of a vector. For this reason, a deque is slower than a vector. Still, the time
complexity of adding and removing elements is O(1) on average at both ends.

Pino

A stack (stack) is a data structure that provides two O(1) time operations:
adding an element to the top, and removing an element from the top. It is only
possible to access the top element of a stack.

The following code shows how a stack can be used:

stack<int> s;
s.push(3);
s.push(2);
s.push(5);
cout << s.top(); // 5
s.pop();
cout << s.top(); // 2
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Queue

A queue (queue) also provides two O(1) time operations: adding a new element
to the end, and removing the first element. It is only possible to access the first
and the last element of a queue.

The following code shows how a queue can be used:

queue<int> s;
s.push(3);
s.push(2);
s.push(5);
cout << s.front(); // 3
s.pop();
cout << s.front(); // 2

Priority queue

A priority queue (priority_queue) maintains a set of elements. The supported
operations are insertion and, depending on the type of the queue, retrieval and
removal of either the minimum element or the maximum element. The time
complexity is O(logn) for insertion and removal and O(1) for retrieval.

While a set structure efficiently supports all the operations of a priority queue,
the benefit in using a priority queue is that it has smaller constant factors.
A priority queue is usually implemented using a heap structure that is much
simpler than a balanced binary tree needed for an ordered set.

As default, the elements in the C++ priority queue are sorted in decreasing
order, and it is possible to find and remove the largest element in the queue. The
following code shows an example:

priority_queue<int> q;
q.push(3);
q.push(5);
q.push(7);
q.push(2);
cout << q.top() << "\n"; // 7
q.pop();
cout << q.top() << "\n"; // 5
q.pop();
q.push(6);
cout << q.top() << "\n"; // 6
q.pop();

The following definition creates a priority queue that supports finding and
removing the minimum element:

priority_queue<int,vector<int>,greater<int>> q;
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4.6 Comparison to sorting

Often it’s possible to solve a problem using either data structures or sorting.
Sometimes there are remarkable differences in the actual efficiency of these
approaches, which may be hidden in their time complexities.

Let us consider a problem where we are given two lists A and B that both
contain n integers. Our task is to calculate the number of integers that belong to
both of the lists. For example, for the lists

A = [5,2,8,9,4] and B = [3,2,9,5],

the answer is 3 because the numbers 2, 5 and 9 belong to both of the lists.
A straightforward solution for the problem is to go through all pairs of num-

bers in O(n2) time, but next we will concentrate on more efficient solutions.

Solution 1

We construct a set of the numbers in A, and after this, iterate through the
numbers in B and check for each number if it also belongs to A. This is efficient
because the numbers in A are in a set. Using the set structure, the time
complexity of the algorithm is O(n logn).

Solution 2

It is not needed to maintain an ordered set, so instead of the set structure we
can also use the unordered_set structure. This is an easy way to make the
algorithm more efficient because we only have to change the data structure that
the algorithm uses. The time complexity of the new algorithm is O(n).

Solution 3

Instead of data structures, we can use sorting. First, we sort both lists A and
B. After this, we iterate through both the lists at the same time and find the
common elements. The time complexity of sorting is O(n logn), and the rest of
the algorithm works in O(n) time, so the total time complexity is O(n logn).

Efficiency comparison

The following table shows how efficient the above algorithms are when n varies
and the elements in the lists are random integers between 1 . . .109:

n solution 1 solution 2 solution 3
106 1,5 s 0,3 s 0,2 s

2 ·106 3,7 s 0,8 s 0,3 s
3 ·106 5,7 s 1,3 s 0,5 s
4 ·106 7,7 s 1,7 s 0,7 s
5 ·106 10,0 s 2,3 s 0,9 s
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Solutions 1 and 2 are equal except that solution 1 uses the set structure and
solution 2 uses the unordered_set structure. In this case, this choice has a big
effect on the running time becase solution 2 is 4–5 times faster than solution 1.

However, the most efficient solution is solution 3 that uses sorting. It only
uses half of the time compared to solution 2. Interestingly, the time complexity
of both solution 1 and solution 3 is O(n logn), but despite this, solution 3 is ten
times faster. The explanation for this is that sorting is a simple procedure and
it is done only once at the beginning of solution 3, and the rest of the algorithm
works in linear time. On the other hand, solution 3 maintains a complex balanced
binary tree during the whole algorithm.
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Chapter 5

Complete search

Compelete search is a general method that can be used for solving almost any
algorithm problem. The idea is to generate all possible solutions for the problem
using brute force, and select the best solution or count the number of solutions,
depending on the problem.

Complete search is a good technique if it is feasible to go through all the
solutions, because the search is usually easy to implement and it always gives
the correct answer. If complete search is too slow, greedy algorithms or dynamic
programming, presented in the next chapters, may be used.

5.1 Generating subsets

We first consider the case where the possible solutions for the problem are the
subsets of a set of n elements. In this case, a complete search algorithm has to
generate all 2n subsets of the set.

Method 1

An elegant way to go through all subsets of a set is to use recursion. The following
function gen generates the subsets of the set {1,2, . . . ,n}. The function maintains
a vector v that will contain the elements in the subset. The generation of the
subsets begins when the function is called with parameter 1.

void gen(int k) {
if (k == n+1) {

// process subset v
} else {

gen(k+1);
v.push_back(k);
gen(k+1);
v.pop_back();

}
}
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The parameter k is the number that is the next candidate to be included in
the subset. The function branches to two cases: either k is included or it is not
included in the subset. Finally, when k = n+1, a decision has been made for all
the numbers and one subset has been generated.

For example, when n = 3, the function calls create a tree illustrated below.
At each call, the left branch doesn’t include the number and the right branch
includes the number in the subset.

gen(1)

gen(2) gen(2)

gen(3) gen(3) gen(3) gen(3)

gen(4) gen(4) gen(4) gen(4) gen(4) gen(4) gen(4) gen(4)

; {3} {2} {2,3} {1} {1,3} {1,2} {1,2,3}

Method 2

Another way to generate the subsets is to exploit the bit representation of in-
tegers. Each subset of a set of n elements can be represented as a sequence of
n bits, which corresponds to an integer between 0 . . .2n −1. The ones in the bit
representation indicate which elements of the set are included in the subset.

The usual interpretation is that element k is included in the subset if kth bit
from the end of the bit sequence is one. For example, the bit representation of 25
is 11001 that corresponds to the subset {1,4,5}.

The following iterates through all subsets of a set of n elements

for (int b = 0; b < (1<<n); b++) {
// process subset b

}

The following code converts each bit representation to a vector v that contains
the elements in the subset. This can be done by checking which bits are one in
the bit representation.

for (int b = 0; b < (1<<n); b++) {
vector<int> v;
for (int i = 0; i < n; i++) {

if (b&(1<<i)) v.push_back(i+1);
}

}
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5.2 Generating permutations

Another common situation is that the solutions for the problem are permutations
of a set of n elements. In this case, a complete search algorithm has to generate
n! possible permutations.

Method 1

Like subsets, permutations can be generated using recursion. The following
function gen iterates through the permutations of the set {1,2, . . . ,n}. The function
uses the vector v for storing the permutations, and the generation begins by
calling the function without parameters.

void haku() {
if (v.size() == n) {

// process permutation v
} else {

for (int i = 1; i <= n; i++) {
if (p[i]) continue;
p[i] = 1;
v.push_back(i);
haku();
p[i] = 0;
v.pop_back();

}
}

}

Each function call adds a new element to the permutation in the vector v.
The array p indicates which elements are already included in the permutation. If
p[k]= 0, element k is not included, and if p[k]= 1, element k is included. If the
size of the vector equals the size of the set, a permutation has been generated.

Method 2

Another method is to begin from permutation {1,2, . . . ,n} and at each step gener-
ate the next permutation in increasing order. The C++ standard library contains
the function next_permutation that can be used for this. The following code
generates the permutations of the set {1,2, . . . ,n} using the function:

vector<int> v;
for (int i = 1; i <= n; i++) {

v.push_back(i);
}
do {

// process permutation v
} while (next_permutation(v.begin(),v.end()));
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5.3 Backtracking
A backtracking algorithm begins from an empty solution and extends the
solution step by step. At each step, the search branches to all possible directions
how the solution can be extended. After processing one branch, the search
continues to other possible directions.

As an example, consider the queen problem where our task is to calculate
the number of ways we can place n queens to an n× n chessboard so that no
two queens attack each other. For example, when n = 4, there are two possible
solutions for the problem:

K

K

K

K

K

K

K

K

The problem can be solved using backtracking by placing queens to the board
row by row. More precisely, we should place exactly one queen to each row so that
no queen attacks any of the queens placed before. A solution is ready when we
have placed all n queens to the board.

For example, when n = 4, the tree produced by the backtracking algorithm
begins like this:

K K K K

K K K K
K K K K

7 7 7 3

At the bottom level, the three first subsolutions are not valid because the
queens attack each other. However, the fourth subsolution is valid and it can be
extended to a full solution by placing two more queens to the board.

The following code implements the search:

48



void search(int y) {
if (y == n) {

c++;
return;

}
for (int x = 0; x < n; x++) {

if (r1[x] || r2[x+y] || r3[x-y+n-1]) continue;
r1[x] = r2[x+y] = r3[x-y+n-1] = 1;
search(y+1);
r1[x] = r2[x+y] = r3[x-y+n-1] = 0;

}
}

The search begins by calling search(0). The size of the board is in the variable
n, and the code calculates the number of solutions to the variable c.

The code assumes that the rows and columns of the board are numbered from
0. The function places a queen to row y when 0 ≤ y < n. Finally, if y = n, one
solution has been found and the variable c is increased by one.

The array r1 keeps track of the columns that already contain a queen. Sim-
ilarly, the arrays r2 and r3 keep track of the diagonals. It is not allowed to
add another queen to a column or to a diagonal. For example, the rows and the
diagonals of the 4×4 board are numbered as follows:

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

2 3 4 5

1 2 3 4

0 1 2 3

r1 r2 r3

Using the presented backtracking algorithm, we can calculate that, for exam-
ple, there are 92 ways to place 8 queens to an 8×8 chessboard. When n increases,
the search quickly becomes slow because the number of the solutions increases
exponentially. For example, calculating the ways to place 16 queens to the 16×16
chessboard already takes about a minute (there are 14772512 solutions).

5.4 Pruning the search

A backtracking algorithm can often be optimized by pruning the search tree. The
idea is to add ”intelligence” to the algorithm so that it will notice as soon as
possible if is not possible to extend a subsolution into a full solution. This kind of
optimization can have a tremendous effect on the efficiency of the search.

Let us consider a problem where our task is to calculate the number of paths
in an n×n grid from the upper-left corner to the lower-right corner so that each
square will be visited exactly once. For example, in the 7×7 grid, there are
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111712 possible paths from the lower-right corner to the upper-right corner. One
of the paths is as follows:

We will concentrate on the 7×7 case because it is computationally suitable
difficult. We begin with a straightforward backtracking algorithm, and then
optimize it step by step using observations how the search tree can be pruned.
After each optimization, we measure the running time of the algorithm and the
number of recursive calls, so that we will clearly see the effect of each optimization
on the efficiency of the search.

Basic algorithm

The first version of the algorithm doesn’t contain any optimizations. We simply
use backtracking to generate all possible paths from the upper-left corner to the
lower-right corner.

• running time: 483 seconds

• recursive calls: 76 billions

Optimization 1

The first step in a solution is either downward or to the right. There are always
two paths that are symmetric about the diagonal of the grid after the first step.
For example, the following paths are symmetric:

Thus, we can decide that the first step in the solution is always downward,
and finally multiply the number of the solutions by two.

• running time: 244 seconds

• recursive calls: 38 billions
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Optimization 2

If the path reaches the lower-right square before it has visited all other squares
of the grid, it is clear that it will not be possible to complete the solution. An
example of this is the following case:

Using this observation, we can terminate the search branch immediately if we
reach the lower-right square too early.

• running time: 119 seconds

• recursive calls: 20 billions

Optimization 3

If the path touches the wall so that there is an unvisited square at both sides,
the grid splits into two parts. For example, in the following case both the left and
the right squares are unvisited:

Now it will not be possible to visit every square, so we can terminate the search
branch. This optimization is very useful:

• running time: 1.8 seconds

• recursive calls: 221 millions

Optimization 4

The idea of the previous optimization can be generalized: the grid splits into two
parts if the top and bottom neighbors of the current square are unvisited and the
left and right neighbors are wall or visited (or vice versa).

For example, in the following case the top and bottom neighbors are unvisited,
so the path cannot visit all squares in the grid anymore:
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The search becomes even faster when we terminate the search branch in all such
cases:

• running time: 0.6 seconds

• recursive calls: 69 millions

Now it’s a good moment to stop optimization and remember our starting point.
The running time of the original algorithm was 483 seconds, and now after the
optimizations, the running time is only 0.6 seconds. Thus, the algorithm became
nearly 1000 times faster after the optimizations.

This is a usual phenomenon in backtracking because the search tree is usually
large and even simple optimizations can prune a lot of branches in the tree.
Especially useful are optimizations that occur at the top of the search tree
because they can prune the search very efficiently.

5.5 Meet in the middle

Meet in the middle is a technique where the search space is divided into two
equally large parts. A separate search is performed for each of the parts, and
finally the results of the searches are combined.

The meet in the middle technique can be used if there is an efficient way to
combine the results of the searches. In this case, the two searches may require
less time than one large search. Typically, we can turn a factor of 2n into a factor
of 2n/2 using the meet in the middle technique.

As an example, consider a problem where we are given a list of n numbers and
an integer x. Our task is to find out if it is possible to choose some numbers from
the list so that the sum of the numbers is x. For example, given the list [2,4,5,9]
and x = 15, we can choose the numbers [2,4,9] to get 2+4+9= 15. However, if
the list remains the same but x = 10, it is not possible to form the sum.

A standard solution for the problem is to go through all subsets of the elements
and check if the sum of any of the subsets is x. The time complexity of this solution
is O(2n) because there are 2n possible subsets. However, using the meet in the
middle technique, we can create a more efficient O(2n/2) time solution. Note that
O(2n) and O(2n/2) are different complexities because 2n/2 equals

p
2n.

The idea is to divide the list given as input to two lists A and B that each
contain about half of the numbers. The first search generates all subsets of the
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numbers in the list A and stores their sums to list SA. Correspondingly, the
second search creates the list SB from the list B. After this, it suffices to check if
it is possible to choose one number from SA and another number from SB so that
their sum is x. This is possible exactly when there is a way to form the sum x
using the numbers in the original list.

For example, assume that the list is [2,4,5,9] and x = 15. First, we divide the
list into A = [2,4] and B = [5,9]. After this, we create the lists SA = [0,2,4,6] and
SB = [0,5,9,14]. The sum x = 15 is possible to form because we can choose the
number 6 from SA and the number 9 from SB. This choice corresponds to the
solution [2,4,9].

The time complexity of the algorithm is O(2n/2) because both lists A and B
contain n/2 numbers and it takes O(2n/2) time to calculate the sums of their
subsets to lists SA and SB. After this, it is possible to check in O(2n/2) time if the
sum x can be created using the numbers in SA and SB.
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Chapter 6

Greedy algorithms

A greedy algorithm constructs a solution for a problem by always making a
choice that looks the best at the moment. A greedy algorithm never takes back
its choices, but directly constructs the final solution. For this reason, greedy
algorithms are usually very efficient.

The difficulty in designing a greedy algorithm is to invent a greedy strategy
that always produces an optimal solution for the problem. The locally optimal
choices in a greedy algorithm should also be globally optimal. It’s often difficult
to argue why a greedy algorithm works.

6.1 Coin problem

As the first example, we consider a problem where we are given a set of coin
values and our task is to form a sum of money using the coins. The values of the
coins are {c1, c2, . . . , ck}, and each coin can be used as many times we want. What
is the minimum number of coins needed?

For example, if the coins are euro coins (in cents)

{1,2,5,10,20,50,100,200}

and the sum of money is 520, we need at least four coins. The optimal solution is
to select coins 200+200+100+20 whose sum is 520.

Greedy algorithm

A natural greedy algorithm for the problem is to always select the largest possible
coin, until we have constructed the required sum of money. This algorithm works
in the example case, because we first select two 200 cent coins, then one 100 cent
coin and finally one 20 cent coin. But does this algorithm always work?

It turns out that, for the set of euro coins, the greedy algorithm always works,
i.e., it always produces a solution with the fewest possible number of coins. The
correctness of the algorithm can be argued as follows:

Each coin 1, 5, 10, 50 and 100 appears at most once in the optimal solution.
The reason for this is that if the solution would contain two such coins, we could
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replace them by one coin and obtain a better solution. For example, if the solution
would contain coins 5+5, we could replace them by coin 10.

In the same way, both coins 2 and 20 can appear at most twice in the optimal
solution because, we could replace coins 2+2+2 by coins 5+1 and coins 20+20+20
by coins 50+10. Moreover, the optimal solution can’t contain coins 2+2+1 or
20+20+10 because we would replace them by coins 5 and 50.

Using these observations, we can show for each coin x that it is not possible to
optimally construct sum x or any larger sum by only using coins that are smaller
than x. For example, if x = 100, the largest optimal sum using the smaller coins
is 5+20+20+5+2+2= 99. Thus, the greedy algorithm that always selects the
largest coin produces the optimal solution.

This example shows that it can be difficult to argue why a greedy algorithm
works, even if the algorithm itself is simple.

General case

In the general case, the coin set can contain any coins and the greedy algorithm
not necessarily produces an optimal solution.

We can prove that a greedy algorithm doesn’t work by showing a counterex-
ample where the algorithm gives a wrong answer. In this problem it’s easy to find
a counterexample: if the coins are {1,3,4} and the sum of money is 6, the greedy
algorithm produces the solution 4+1+1, while the optimal solution is 3+3.

We don’t know if the general coin problem can be solved using any greedy
algorithm. However, we will revisit the problem in the next chapter because the
general problem can be solved using a dynamic programming algorithm that
always gives the correct answer.

6.2 Scheduling
Many scheduling problems can be solved using a greedy strategy. A classic
problem is as follows: Given n events with their starting and ending times, our
task is to plan a schedule so that we can join as many events as possible. It’s not
possible to join an event partially. For example, consider the following events:

event starting time ending time
A 1 3
B 2 5
C 3 9
D 6 8

In this case the maximum number of events is two. For example, we can join
events B and D as follows:

A
B

C
D
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It is possible to invent several greedy algorithms for the problem, but which
of them works in every case?

Algorithm 1

The first idea is to select as short events as possible. In the example case this
algorithm selects the following events:

A
B

C
D

However, choosing short events is not always a correct strategy but the
algorithm fails, for example, in the following case:

If we select the short event, we can only select one event. However, it would be
possible to select both the long events.

Algorithm 2

Another idea is to always select the next possible event that begins as early as
possible. This algorithm selects the following events:

A
B

C
D

However, we can find a counterexample for this algorithm, too. For example,
in the following case, the algorithm selects only one event:

If we select the first event, it is not possible to select any other events. However,
it would be possible to join the other two events.
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Algorithm 3

The third idea is to always select the next possible event that ends as early as
possible. This algorithm selects the following events:

A
B

C
D

It turns out that this algorithm always produces an optimal solution. The
algorithm works because regarding the final solution, it is optimal to select an
event that ends as soon as possible. Then it is optimal to select the next event
using the same strategy, etc.

One way to justify the choice is to think what happens if we first select some
event that ends later than the event that ends as soon as possible. This can never
be a better choice because after an event that ends later, we will have at most
an equal number of possibilities to select for the next events, compared to the
strategy that we select the event that ends as soon as possible.

6.3 Tasks and deadlines
We are given n tasks with duration and deadline. Our task is to choose an order
to perform the tasks. For each task, we get d− x points where d is the deadline
of the task and x is the moment when we finished the task. What is the largest
possible total score we can obtain?

For example, if the tasks are

task duration deadline
A 4 2
B 3 5
C 2 7
D 4 5

then the optimal solution is to perform the tasks as follows:

C B A D

0 5 10

In this solution, C yields 5 points, B yields 0 points, A yields −7 points and D
yields −8 points, so the total score is −10.

Surprisingly, the optimal solution for the problem doesn’t depend on the
dedalines at all, but a correct greedy strategy is to simply perform the tasks
sorted by their durations in increasing order. The reason for this is that if we
ever perform two successive tasks such that the first task takes longer than the
second task, we can obtain a better solution if we swap the tasks. For example, if
the successive tasks are
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X Y

a b

and a > b, the swapped order of the tasks

Y X

b a

gives b points less to X and a points more to Y , so the total score increases by
a−b > 0. In an optimal solution, for each two successive tasks, it must hold that
the shorter task comes before the longer task. Thus, the tasks must be performed
sorted by their durations.

6.4 Minimizing sums
We will next consider a problem where we are given n numbers a1,a2, . . . ,an and
our task is to find a value x such that the sum

|a1 − x|c +|a2 − x|c +·· ·+ |an − x|c

becomes as small as possible. We will focus on the cases c = 1 and c = 2.

Case c = 1

In this case, we should minimize the sum

|a1 − x|+ |a2 − x|+ · · ·+ |an − x|.

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 2
which produces the sum

|1−2|+ |2−2|+ |9−2|+ |2−2|+ |6−2| = 12.

In the general case, the best choice for x is the median of the numbers, i.e., the
middle number after sorting. For example, the list [1,2,9,2,6] becomes [1,2,2,6,9]
after sorting, so the median is 2.

The median is the optimal choice, because if x is smaller than the median, the
sum becomes smaller by increasing x, and if x is larger then the median, the sum
becomes smaller by decreasing x Thus, we should move x as near the median as
possible, so the optimal solution that x is the median. If n is even and there are
two medians, both medians and all values between them are optimal solutions.

Case c = 2

In this case, we should minimize the sum

(a1 − x)2 + (a2 − x)2 +·· ·+ (an − x)2.
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For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 4
which produces the sum

(1−4)2 + (2−4)2 + (9−4)2 + (2−4)2 + (6−4)2 = 46.

In the general case, the best choice for x is the average of the numbers. In the
example the average is (1+2+9+2+6)/5 = 4. This result can be derived by
presenting the sum as follows:

nx2 −2x(a1 +a2 +·· ·+an)+ (a2
1 +a2

2 +·· ·+a2
n).

The last part doesn’t depend on x, so we can ignore it. The remaining parts form a
function nx2−2xs where s = a1+a2+·· ·+an. This is a parabola opening upwards
with roots x = 0 and x = 2s/n, and the minimum value is the average of the roots
x = s/n, i.e., the average of the numbers a1,a2, . . . ,an.

6.5 Data compression

We are given a string, and our task is to compress it so that it requires less
space. We will do this using a binary code that determines for each character
a codeword that consists of bits. After this, we can compress the string by
replacing each character by the corresponding codeword. For example, the
following binary code determines codewords for characters A–D:

character codeword
A 00
B 01
C 10
D 11

This is a constant-length code which means that the length of each codeword is
the same. For example, the compressed form of the string AABACDACA is

000001001011001000,

so 18 bits are needed. However, we can compress the string better by using a
variable-length code where codewords may have different lengths. Then we
can give short codewords for characters that appear often, and long codewords
for characters that appear rarely. It turns out that the optimal code for the
aforementioned string is as follows:

character codeword
A 0
B 110
C 10
D 111
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The optimal code produces a compressed string that is as short as possible. In
this case, the compressed form using the optimal code is

001100101110100,

so only 15 bits are needed. Thus, thanks to a better code it was possible to save 3
bits in the compressed string.

Note that it is required that no codeword is a prefix of another codeword. For
example, it is not allowed that a code would contain both codewords 10 and 1011.
The reason for this is that we also want to be able to generate the original string
from the compressed string. If a codeword could be a prefix of another codeword,
this would not always be possible. For example, the following code is not valid:

merkki koodisana
A 10
B 11
C 1011
D 111

Using this code, it would not be possible to know if the compressed string 1011
means the string AB or the string C.

Huffman coding

Huffman coding is a greedy algorithm that constructs an optimal code for
compressing a string. The algorithm builds a binary tree based on the frequencies
of the characters in the string, and a codeword for each characters can be read
by following a path from the root to the corresponding node. A move to the left
correspons to bit 0, and a move to the right corresponds to bit 1.

Initially, each character of the string is represented by a node whose weight
is the number of times the character appears in the string. Then at each step two
nodes with minimum weights are selected and they are combined by creating
a new node whose weight is the sum of the weights of the original nodes. The
process continues until all nodes have been combined and the code is ready.

Next we will see how Huffman coding creates the optimal code for the string
AABACDACA. Initially, there are four nodes that correspond to the characters in
the string:

5 1 2 1

A B C D

The node that represents character A has weight 5 because character A appears 5
times in the string. The other weights have been calculated in the same way.

The first step is to combine the nodes that correspond to characters B and D,
both with weight 1. The result is:
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5 2 1 1

2

A C B D

0 1

After this, the nodes with weight 2 are combined:

5

2

1 1

2

4

A

C

B D

0 1

0 1

Finally, the two remaining nodes are combined:

5

2

1 1

2

4

9

A

C

B D

0 1

0 1

0 1

Now all nodes are in the tree, so the code is ready. The following codewords
can be read from the tree:

character codeword
A 0
B 110
C 10
D 111
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Chapter 7

Dynamic programming

Dynamic programming is a technique that combines the correctness of com-
plete search and the efficiency of greedy algorithms. Dynamic programming can
be used if the problem can be divided into subproblems that can be calculated
independently.

There are two uses for dynamic programming:

• Findind an optimal solution: We want to find a solution that is as large
as possible or as small as possible.

• Couting the number of solutions: We want to calculate the total number
of possible solutions.

We will first see how dynamic programming can be used for finding an optimal
solution, and then we will use the same idea for counting the solutions.

Understanding dynamic programming is a milestone in every competitive
programmer’s career. While the basic idea of the technique is simple, the chal-
lenge is how to apply it for different problems. This chapter introduces a set of
classic problems that are a good starting point.

7.1 Coin problem
We first consider a problem that we have already seen: Given a set of coin values
{c1, c2, . . . , ck} and a sum of money x, our task is to form the sum x using as few
coins as possible.

In Chapter 6.1, we solved the problem using a greedy algorithm that always
selects the largest possible coin for the sum. The greedy algorithm works, for
example, when the coins are the euro coins, but in the general case the greedy
algorithm doesn’t necessarily produce an optimal solution.

Now it’s time to solve the problem efficiently using dynamic programming, so
that the algorithms works for any coin set. The dynamic programming algorithm
is based on a recursive function that goes through all possibilities how to select
the coins, like a brute force algorithm. However, the dynamic programming
algorithm is efficient because it uses memoization to calculate the answer for
each subproblem only once.
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Recursive formulation

The idea in dynamic programming is to formulate the problem recursively so that
the answer for the problem can be calculated from the answers for the smaller
subproblems. In this case, a natural problem is as follows: what is the smallest
number of coins required for constructing sum x?

Let f (x) be a function that gives the answer for the problem, i.e., f (x) is the
smallest number of coins required for constructing sum x. The values of the
function depend on the values of the coins. For example, if the values are {1,3,4},
the first values of the function are as follows:

f (0) = 0
f (1) = 1
f (2) = 2
f (3) = 1
f (4) = 1
f (5) = 2
f (6) = 2
f (7) = 2
f (8) = 2
f (9) = 3
f (10) = 3

First, f (0) = 0 because no coins are needed for sum 0. Moreover, f (3) = 1
because the sum 3 can be formed using coin 3, and f (5) = 2 because the sum 5
can be formed using coins 1 and 4.

The essential property in the function is that the value f (x) can be calculated
recursively from the smaller values of the function. For example, if the coin set is
{1,3,4}, there are three ways to select the first coin in a solution: we can choose
coin 1, 3 or 4. If coin 1 is chosen, the remaining task is to form the sum x−1.
Similarly, if coin 3 or 4 is chosen, we should form the sum x−3 or x−4.

Thus, the recursive formula is

f (x)=min( f (x−1), f (x−3), f (x−4))+1

where the function min returns the smallest of its parameters. In the general
case, for the coin set {c1, c2, . . . , ck}, the recursive formula is

f (x)=min( f (x− c1), f (x− c2), . . . , f (x− ck))+1.

The base case for the function is

f (0)= 0,

because no coins are needed for constructing the sum 0. In addition, it’s a good
idea to define

f (x)=∞, jos x < 0.

This means that an infinite number of coins is needed to create a negative sum
of money. This prevents the situation that the recursive function would form a
solution where the initial sum of money is negative.
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Now it’s possible to implement the function in C++ directly using the recursive
definition:

int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
int u = 1e9;
for (int i = 1; i <= k; i++) {

u = min(u, f(x-c[i])+1);
}
return u;

}

The code assumes that the available coins are c[1],c[2], . . . ,c[k], and the value
109 means infinity. This function works but it is not efficient yet because it goes
through a large number of ways to construct the sum. However, the function
becomes efficient by using memoization.

Memoization

Dynamic programming allows to calculate the value of a recursive function
efficiently using memoization. This means that an auxiliary array is used for
storing the values of the function for different parameters. For each parameter,
the value of the function is calculated only once, and after this, it can be directly
retrieved from the array.

In this problem, we can use the array

int d[N];

where d[x] will contain the value f (x). The constant N should be chosen so
that there is space for all needed values of the function.

After this, the function can be efficiently implemented as follows:

int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
if (d[x]) return d[x];
int u = 1e9;
for (int i = 1; i <= k; i++) {

u = min(u, f(x-c[i])+1);
}
d[x] = u;
return d[x];

}

The function handles the base cases x = 0 and x < 0 as previously. Then the
function checks if f (x) has already been calculated and stored to d[x]. If f (x) can
be found in the array, the function directly returns it. Otherwise the function
calculates the value recursively and stores it to d[x].
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Using memoization the function works efficiently because it is needed to
recursively calculate the answer for each x only once. After a value f (x) has been
stored to the array, it can be directly retrieved whenever the function will be
called again with parameter x.

The time complexity of the resulting algorithm is O(xk) when the sum is x
and the number of coins is k. In practice, the algorithm is usable if x is so small
that it is possible to allocate an array for all possible function parameters.

Note that the array can also be constructed using a loop that calculates all
the values instead of a recursive function:

d[0] = 0;
for (int i = 1; i <= x; i++) {

int u = 1e9;
for (int j = 1; j <= k; j++) {

if (i-c[j] < 0) continue;
u = min(u, d[i-c[j]]+1);

}
d[i] = u;

}

This implementation is shorter and somewhat more efficient than recursion,
and experienced competitive programmers often implement dynamic program-
ming solutions using loops. Still, the underlying idea is the same as in the
recursive function.

Constructing the solution

Sometimes it is not enough to find out the value of the optimal solution, but we
should also give an example how such a solution can be constructed. In this
problem, this means that the algorithm should show how to select the coins that
produce the sum x using as few coins as possible.

We can construct the solution by adding another array to the code. The array
indicates for each sum of money the first coin that should be chosen in an optimal
solution. In the following code, the array e is used for this:

d[0] = 0;
for (int i = 1; i <= x; i++) {

d[i] = 1e9;
for (int j = 1; j <= k; j++) {

if (i-c[j] < 0) continue;
int u = d[i-c[j]]+1;
if (u < d[i]) {

d[i] = u;
e[i] = c[j];

}
}

}
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After this, we can print the coins needed for the sum x as follows:

while (x > 0) {
cout << e[x] << "\n";
x -= e[x];

}

Counting the number of solutions

Let us now consider a variation of the problem that it’s like the original problem
but we should count the total number of solutions instead of finding the optimal
solution. For example, if the coins are {1,3,4} and the required sum is 5, there
are a total of 6 solutions:

• 1+1+1+1+1

• 1+1+3

• 1+3+1

• 3+1+1

• 1+4

• 4+1

The number of the solutions can be calculated using the same idea as finding
the optimal solution. The difference is that when finding the optimal solution, we
maximize or minimize something in the recursion, but now we will sum together
all possible alternatives to construct a solution.

In this case, we can define a function f (x) that returns the number of ways
to construct the sum x using the coins. For example, f (5)= 6 when the coins are
{1,3,4}. The function f (x) can be recursively calculated using the formula

f (x)= f (x− c1)+ f (x− c2)+·· ·+ f (x− ck)

because to form the sum x we should first choose some coin ci and after this form
the sum x− ci. The base cases are f (0) = 1 because there is exactly one way to
form the sum 0 using an empty set of coins, and f (x)= 0, when x < 0, because it’s
not possible to form a negative sum of money.

In the above example the function becomes

f (x)= f (x−1)+ f (x−3)+ f (x−4)

and the first values of the function are:

f (0) = 1
f (1) = 1
f (2) = 1
f (3) = 2
f (4) = 4
f (5) = 6
f (6) = 9
f (7) = 15
f (8) = 25
f (9) = 40

67



The following code calculates the value f (x) using dynamic programming by
filling the array d for parameters 0 . . . x:

d[0] = 1;
for (int i = 1; i <= x; i++) {

for (int j = 1; j <= k; j++) {
if (i-c[j] < 0) continue;
d[i] += d[i-c[j]];

}
}

Often the number of the solutions is so large that it is not required to calculate
the exact number but it is enough to give the answer modulo m where, for exam-
ple, m = 109 +7. This can be done by changing the code so that all calculations
will be done in modulo m. In this case, it is enough to add the line

d[i] %= m;

after the line

d[i] += d[i-c[j]];

Now we have covered all basic techniques related to dynamic programming.
Since dynamic programming can be used in many different situations, we will
now go through a set of problems that show further examples how dynamic
programming can be used.

7.2 Longest increasing subsequence

Given an array that contains n numbers x1, x2, . . . , xn, our task is find the longest
increasing subsequence in the array. This is a sequence of array elements
that goes from the left to the right, and each element in the sequence is larger
than the previous element. For example, in the array

6 2 5 1 7 4 8 3

1 2 3 4 5 6 7 8

the longest increasing subsequence contains 4 elements:

6 2 5 1 7 4 8 3

1 2 3 4 5 6 7 8

Let f (k) be the length of the longest increasing subsequence that ends to index
k. Thus, the answer for the problem is the largest of values f (1), f (2), . . . , f (n).
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For example, in the above array the values for the function are as follows:

f (1) = 1
f (2) = 1
f (3) = 2
f (4) = 1
f (5) = 3
f (6) = 2
f (7) = 4
f (8) = 2

When calculating the value f (k), there are two possibilities how the subse-
quence that ends to index k is constructed:

1. The subsequence only contains the element xk, so f (k)= 1.

2. We choose some index i for which i < k and xi < xk. We extend the longest
increasing subsequence that ends to index i by adding the element xk to it.
In this case f (k)= f (i)+1.

Consider calculating the value f (7). The best solution is to extend the longest
increasing subsequence that ends to index 5, i.e., the sequence [2,5,7], by adding
the element x7 = 8. The result is [2,5,7,8], and f (7)= f (5)+1= 4.

A straightforward way to calculate the value f (k) is to go through all indices
i = 1,2, . . . ,k−1 that can contain the previous element in the subsequence. The
time complexity of such an algorithm is O(n2). Surprisingly, it is also possible to
solve the problem in O(n logn) time, but this is more difficult.

7.3 Path in a grid

Our next problem is to find a path in an n×n grid from the upper-left corner to
the lower-right corner. Each square contains a number, and the path should be
constructed so that the sum of numbers along the path is as large as possible. In
addition, it is only allowed to move downwards and to the right.

In the followig grid, the best path is marked with gray background:

3 7 9 2 7

9 8 3 5 5

1 7 9 8 5

3 8 6 4 10

6 3 9 7 8

The sum of numbers is 3+9+8+7+9+8+5+10+8 = 67 that is the largest
possible sum in a path from the upper-left corner to the lower-right corner.

A good approach for the problem is to calculate for each square (y, x) the
largest possible sum in a path from the upper-left corner to the square (y, x). We
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denote this sum f (y, x), so f (n,n) is the largest sum in a path from the upper-left
corner to the lower-right corner.

The recursive formula is based on the observation that a path that ends to
square(y, x) can either come from square (y, x−1) or from square (y−1, x):

→
↓

Let r(y, x) denote the number in square (y, x). The base cases for the recursive
function are as follows:

f (1,1) = r(1,1)
f (1, x) = f (1, x−1)+ r(1, x)
f (y,1) = f (y−1,1)+ r(y,1)

In the general case there are two possible paths, and we should select the
path that produces the larger sum:

f (y, x)=max( f (y, x−1), f (y−1, x))+ r(y, x)

The time complexity of the solution is O(n2), because each value f (y, x) can
be calculated in constant time using the values of the adjacent squares.

7.4 Knapsack

Knapsack is a classic problem where we are given n objects with weights
p1, p2, . . . , pn and values a1,a2, . . . ,an. Our task is to choose a subset of the
objects such that the sum of the weights is at most x and the sum of the values is
as large as possible.

For example, if the objects are

object weight value
A 5 1
B 6 3
C 8 5
D 5 3

and the maximum total weight is 12, the optimal solution is to select objects
B and D. Their total weight 6+5 = 11 doesn’t exceed 12, and their total value
3+3= 6 is as large as possible.

This task is possible to solve in two different ways using dynamic program-
ming. We can either regard the problem as maximizing the total value of the
objects or minimizing the total weight of the objects.
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Solution 1

Maximization: Let f (k,u) denote the largest possible total value when a subset
of objects 1 . . .k is selected such that the total weight is u. The solution for the
problem is the largest value f (n,u) where 0 ≤ u ≤ x. A recursive formula for
calculating the function is

f (k,u)=max( f (k−1,u), f (k−1,u− pk)+ak)

because we can either include or not include object k in the solution. The base
cases are f (0,0) = 0 and f (0,u) = −∞ when u 6= 0. The time compexity of the
solution is O(nx).

In the example case, the optimal solution is f (4,11)= 6 that can be constructed
using the following sequence:

f (4,11)= f (3,6)+3= f (2,6)+3= f (1,0)+3+3= f (0,0)+3+3= 6.

Solution 2

Minimization: Let f (k,u) denote the smallest possible total weight when a subset
of objects 1 . . .k is selected such that the total weight is u. The solution for the
problem is the largest value u for which 0≤ u ≤ s and f (n,u)≤ x where s =∑n

i=1 ai.
A recursive formula for calculating the function is

f (k,u)=min( f (k−1,u), f (k−1,u−ak)+ pk).

as in solution 1. The base cases are f (0,0)= 0 and f (0,u)=∞ when u 6= 0. The
time complexity of the solution is O(ns).

In the example case, the optimal solution is f (4,6)= 11 that can be constructed
using the following sequence:

f (4,6)= f (3,3)+5= f (2,3)+5= f (1,0)+6+5= f (0,0)+6+5= 11.

It is interesting to note how the features of the input affect on the efficiency of
the solutions. The efficiency of solution 1 depends on the weights of the objects,
while the efficiency of solution 2 depends on the values of the objects.

7.5 Edit distance

The edit distance, also known as the Levenshtein distance, indicates how
similar two strings are. It is the minimum number of editing operations needed
for transforming the first string into the second string. The allowed editing
operations are as follows:

• insert a character (e.g. ABC → ABCA)

• remove a character (e.g. ABC → AC)
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• change a character (e.g. ABC → ADC)

For example, the edit distance between LOVE and MOVIE is 2 because we can
first perform operation LOVE → MOVE (change) and then operation MOVE → MOVIE
(insertion). This is the smallest possible number of operations because it is clear
that one operation is not enough.

Suppose we are given strings x of n characters and y of m characters, and
we want to calculate the edit distance between them. This can be efficiently
done using dynamic programming in O(nm) time. Let f (a,b) denote the edit
distance between the first a characters of x and the first b characters of y. Using
this function, the edit distance between x and y is f (n,m), and the function also
determines the editing operations needed.

The base cases for the function are

f (0,b) = b
f (a,0) = a

and in the general case the formula is

f (a,b)=min( f (a,b−1)+1, f (a−1,b)+1, f (a−1,b−1)+ c),

where c = 0 if the ath character of x equals the bth character of y, and otherwise
c = 1. The formula covers all ways to shorten the strings:

• f (a,b−1) means that a character is inserted to x

• f (a−1,b) means that a chacater is removed from x

• f (a−1,b−1) means that x and y contain the same character (c = 0), or a
character in x is transformed into a character in y (c = 1)

The following table shows the values of f in the example case:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

The lower-right corner of the table indicates that the edit distance between
LOVE and MOVIE is 2. The table also shows how to construct the shortest sequence
of editing operations. In this case the path is as follows:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2
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The last characters of LOVE and MOVIE are equal, so the edit distance between
them equals the edit distance between LOV and MOVI. We can use one editing
operation to remove the character I from MOVI. Thus, the edit distance is one
larger than the edit distance between LOV and MOV, etc.

7.6 Counting tilings
Sometimes the dynamic programming state is more complex than a fixed combi-
nation of numbers. As an example, we consider a problem where our task is to
calculate the number of different ways to fill an n×m grid using 1×2 and 2×1
size tiles. For example, one valid solution for the 4×7 grid is

and the total number of solutions is 781.
The problem can be solved using dynamic programming by going through

the grid row by row. Each row in a solution can be represented as a string that
contains m characters from the set {u,t,@,A}. For example, the above solution
consists of four rows that correspond to the following strings:

• u@Au@Au
• t@Atuut
• @A@Attu
• @A@A@At
Let f (k, x) denote the number of ways to construct a solution for the rows

1 . . .k in the grid so that string x corresponds to row k. It is possible to use
dynamic programing here because the state of a row is constrained only be the
state of the previous row.

A solution is valid if row 1 doesn’t contain the character t, row n doesn’t
contain the character u, and all successive rows are compatible. For example, the
rows t@Atuut and @A@Attu are compatible, while the rows u@Au@Au
and @A@A@At are not compatible.

Since a row consists of m characters and there are four choices for each
character, the number of different rows is at most 4m. Thus, the time complexity
of the solution is O(n42m) because we can check the O(4m) possible states for
each row, and for each state, there are O(4m) possible states for the previous row.
In practice, it’s a good idea to rotate the grid so that the shorter side has length
m because the factor 42m dominates the time complexity.

It is possible to make the solution more efficient by using a better representa-
tion for the rows as strings. It turns out that it is sufficient to know the columns
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of the previous row that contain the first square of a vertical tile. Thus, we can
represent a row using only characters u and � where � is a combination of
characters t, @ and A. In this case, there are only 2m distinct rows and the time
complexity becomes O(n22m).

As a final note, there is also a surprising direct formula for calculating the
number of tilings:

dn/2e∏
a=1

dm/2e∏
b=1

4 · (cos2 πa
n+1

+cos2 πb
m+1

).

This formula is very efficient because it calculates the number of tilings on O(nm)
time, but since the answer is a product of real numbers, a practical problem in
using the formula is how to store the intermediate results accurately.

74



Chapter 8

Amortized analysis

Often the time complexity of an algorithm is easy to analyze by looking at the
structure of the algorithm: what loops there are and how many times they are
performed. However, sometimes a straightforward analysis doesn’t give a true
picture of the efficiency of the algorithm.

Amortized analysis can be used for analyzing an algorithm that contains
an operation whose time complexity varies. The idea is to consider all such
operations during the execution of the algorithm instead of a single operation,
and estimate the total time complexity of the operations.

8.1 Two pointers method

In the two pointers method, two pointers iterate through the elements in an
array. Both pointers can move during the algorithm, but the restriction is that
each pointer can move to only one direction. This ensures that the algorithm
works efficiently.

We will next discuss two problems that can be solved using the two pointers
method.

Subarray sum

Given an array that contains n positive integers, our task is to find out if there is
a subarray where the sum of the elements is x. For example, the array

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

contains a subarray with sum 8:

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

It turns out that the problem can be solved in O(n) time using the two pointers
method. The idea is to iterate through the array using two pointers that define a
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range in the array. On each turn, the left pointer moves one step forward, and
the right pointer moves forward as long as the sum is at most x. If the sum of the
range becomes exactly x, we have found a solution.

As an example, we consider the following array with target sum x = 8:

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

First, the pointers define a range with sum 1+3+2= 6. The range can’t be
larger because the next number 5 would make the sum larger than x.

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

After this, the left pointer moves one step forward. The right pointer doesn’t
move because otherwise the sum would become too large.

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

Again, the left pointer moves one step forward, and this time the right pointer
moves three steps forward. The sum is 2+5+1= 8, so we have found a subarray
where the sum of the elements is x.

1 3 2 5 1 1 2 3

1 2 3 4 5 6 7 8

The time complexity of the algorithm depends on the number of steps the
right pointer moves. There is no upper bound how many steps the pointer can
move on a single turn. However, the pointer moves a total of O(n) steps during
the algorithm because it only moves forward.

Since both the left and the right pointer move O(n) steps during the algorithm,
the time complexity is O(n).

Sum of two numbers

Given an array of n integers and an integer x, our task is to find two numbers in
array whose sum is x or report that there are no such numbers. This problem
is known as the 2SUM problem, and it can be solved efficiently using the two
pointers method.

First, we sort the numbers in the array in increasing order. After this, we
iterate through the array using two pointers that begin at both ends of the array.
The left pointer begins from the first element and moves one step forward on each
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turn. The right pointer begins from the last element and always moves backward
until the sum of the range defined by the pointers is at most x. If the sum is
exactly x, we have found a solution.

For example, consider the following array when our task is to find two ele-
ments whose sum is x = 12:

1 4 5 6 7 9 9 10

1 2 3 4 5 6 7 8

The initial positions of the pointers are as follows. The sum of the numbers is
1+10= 11 that is smaller than x.

1 4 5 6 7 9 9 10

1 2 3 4 5 6 7 8

Then the left pointer moves one step forward. The right pointer moves three
steps backward, and the sum becomes 4+7= 11.

1 4 5 6 7 9 9 10

1 2 3 4 5 6 7 8

After this, the left pointer moves one step forward again. The right pointer
doesn’t move, and the solution 5+7= 12 has been found.

1 4 5 6 7 9 9 10

1 2 3 4 5 6 7 8

At the beginning of the algorithm, the sorting takes O(n logn) time. After
this, the left pointer moves O(n) steps forward, and the right pointer moves O(n)
steps backward. Thus, the total time complexity of the algorithm is O(n logn).

Note that it is possible to solve in another way in O(n logn) time using binary
search. In this solution, we iterate through the array and for each number, we try
to find another number such that the sum is x. This can be done by performing n
binary searches, and each search takes O(logn) time.

A somewhat more difficult problem is the 3SUM problem where our task is
to find three numbers whose sum is x. This problem can be solved in O(n2) time.
Can you see how it is possible?

8.2 Nearest smaller elements

Amortized analysis is often used for estimating the number of operations per-
formed for a data structure. The operations may be distributed unevenly so that
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the most operations appear during a certain phase in the algorithm, but the total
number of the operations is limited.

As an example, let us consider a problem where our task is to find for each
element in an array the nearest smaller element, i.e., the nearest smaller
element that precedes the element in the array. It is possible that no such
element exists, and the algorithm should notice this. It turns out that the
problem can be efficiently solved in O(n) time using a suitable data structure.

An efficient solution for the problem is to iterate through the array from the
left to the right, and maintain a chain of elements where the first element is the
active element in the array and each following element is the nearest smaller
element of the previous element. If the chain only contains one element, the
active element doesn’t have a nearest smaller element. At each step, we remove
elements from the chain until the first element is smaller than the active element,
or the chain is empty. After this, the active element becomes the first element in
the chain.

As an example, consider the following array:

1 3 4 2 5 3 4 2

1 2 3 4 5 6 7 8

First, numbers 1, 3 and 4 are added to the chain because each element is
larger than the previous element. This means that the nearest smaller element
of number 4 is number 3 whose nearest smaller element is number 1.

1 3 4 2 5 3 4 2

1 2 3 4 5 6 7 8

The next number 2 is smaller than two first numbers in the chain. Thus,
numbers 4 and 3 are removed, and then number 2 becomes the first element in
the chain. Its nearest smaller element is number 1:

1 3 4 2 5 3 4 2

1 2 3 4 5 6 7 8

After this, number 5 is larger than number 2, so it will be added to the chain
and its nearest smaller element is number 2:

1 3 4 2 5 3 4 2

1 2 3 4 5 6 7 8

Algorithm continues in a similar way and finds out the nearest smaller
element for each number in the array. But how efficient is the algorithm?

The efficiency of the algorithm depends on the total time used for manipu-
lating the chain. If an element is larger than the first element in the chain, it
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will only be inserted to the beginning of the chain which is efficient. However,
sometimes the chain can contain several larger elements and it takes time to
remove them. Still, each element is added exactly once to the chain and removed
at most once. Thus, each element causes O(1) operations to the chain, and the
total time complexity of the algorithm is O(n).

8.3 Sliding window minimum
A sliding window is an active subarray that moves through the array whose
size is constant. At each position of the window, we typically want to calculate
some information about the elements inside the window. An interesting problem
is to maintain the sliding window minimum. This means that at each position
of the window, we should report the smallest element inside the window.

The sliding window minima can be calculated using the same idea that we
used for calculating the nearest smaller elements. The idea is to maintain a
chain whose first element is the last element in the window, and each element is
smaller than the previous element. The last element in the chain is always the
smallest element inside the window. When the sliding window moves forward
and a new element appears, we remove all elements from the chain that are
larger than the new element. After this, we add the new number to the chain. In
addition, if the last element in the chain doesn’t belong to the window anymore,
it is removed from the chain.

As an example, consider the following array when the window size is k = 4:

2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

The sliding window begins from the left border of the array. At the first
window position, the smallest element is 1:

2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

Then the window moves one step forward. The new number 3 is smaller than
the numbers 5 and 4 in the chain, so the numbers 5 and 4 are removed and the
number 3 is added to the chain. The smallest element is 1 as before.

2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

After this, the window moves again and the smallest element 1 doesn’t belong
to the window anymore. Thus, it is removed from the chain and the smallest
element is now 3. In addition, the new number 4 is added to the chain.
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2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

The next new element 1 is smaller than all elements in the chain. Thus, all
elements are removed from the chain and it will only contain the element 1:

2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

Finally the window reaches its last position. The number 2 is added to the
chain, but the smallest element inside the window is still 1.

2 1 4 5 3 4 1 2

1 2 3 4 5 6 7 8

Also in this algorithm, each element in the array is added to the chain exactly
once and removed from the chain at most once. Thus, the total time complexity
of the algorithm is O(n).
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Chapter 9

Range queries

In a range query, a range of an array is given and we should calculate some
value from the elements in the range. Typical range queries are:

• sum query: calculate the sum of elements in range [a,b]

• minimum query: find the smallest element in range [a,b]

• maximum query: find the largest element in range [a,b]

For example, in range [4,7] of the following array, the sum is 4+6+1+3= 14, the
minimum is 1 and the maximum is 6:

1 3 8 4 6 1 3 4

1 2 3 4 5 6 7 8

An easy way to answer a range query is to iterate through all the elements in
the range. For example, we can answer a sum query as follows:

int sum(int a, int b) {
int s = 0;
for (int i = a; i <= b; i++) {

s += t[i];
}
return s;

}

The above function handles a sum query in O(n) time, which is slow if the
array is large and there are a lot of queries. In this chapter we will learn how
range queries can be answered much more efficiently.

9.1 Static array queries
We will first focus on a simple case where the array is static, i.e., the elements
never change between the queries. In this case, it suffices to process the contents
of the array beforehand and construct a data structure that can be used for
answering any possible range query efficiently.
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Sum query

Sum queries can be answered efficiently by constructing a sum array that
contains the sum of the range [1,k] for each k = 1,2, . . . ,n. After this, the sum
of any range [a,b] of the original array can be calculated in O(1) time using the
precalculated sum array.

For example, for the array

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

the corresponding sum array is as follows:

1 4 8 16 22 23 27 29

1 2 3 4 5 6 7 8

The following code constructs a prefix sum array s from array t in O(n) time:

for (int i = 1; i <= n; i++) {
s[i] = s[i-1]+t[i];

}

After this, the following function answers a sum query in O(1) time:

int sum(int a, int b) {
return s[b]-s[a-1];

}

The function calculates the sum of range [a,b] by subtracting the sum of
range [1,a−1] from the sum of range [1,b]. Thus, only two values from the
sum array are needed, and the query takes O(1) time. Note that thanks to the
one-based indexing, the function also works when a = 1 if s[0]= 0.

As an example, consider the range [4,7]:

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

The sum of the range [4,7] is 8+6+1+4= 19. This can be calculated from the
sum array using the sums [1,3] and [1,7]:

1 4 8 16 22 23 27 29

1 2 3 4 5 6 7 8

Thus, the sum of the range [4,7] is 27−8= 19.
We can also generalize the idea of a sum array for a two-dimensional array.

In this case, it will be possible to calculate the sum of any rectangular subarray
in O(1) time. The sum array will contain sums for all subarrays that begin from
the upper-left corner.
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The following picture illustrates the idea:

AB

CD

The sum inside the gray subarray can be calculated using the formula

S(A)−S(B)−S(C)+S(D)

where S(X ) denotes the sum in a rectangular subarray from the upper-left corner
to the position of letter X .

Minimum query

It is also possible to answer a minimum query in O(1) time after preprocessing,
though it is more difficult than answer a sum query. Note that minimum and
maximum queries can always be implemented using same techniques, so it
suffices to focus on the minimum query.

The idea is to find the minimum element for each range of size 2k in the array.
For example, in the array

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

the following minima will be calculated:

range size min
[1,1] 1 1
[2,2] 1 3
[3,3] 1 4
[4,4] 1 8
[5,5] 1 6
[6,6] 1 1
[7,7] 1 4
[8,8] 1 2

range size min
[1,2] 2 1
[2,3] 2 3
[3,4] 2 4
[4,5] 2 6
[5,6] 2 1
[6,7] 2 1
[7,8] 2 2

range size min
[1,4] 4 1
[2,5] 4 3
[3,6] 4 1
[4,7] 4 1
[5,8] 4 1
[1,8] 8 1

The number of 2k ranges in an array is O(n logn) because there are O(logn)
ranges that begin from each array index. The minima for all 2k ranges can be
calculated in O(n logn) time because each 2k range consists of two 2k−1 ranges,
so the minima can be calculated recursively.

After this, the minimum of any range [a,b]c can be calculated in O(1) time as
a minimum of two 2k ranges where k = blog2(b−a+1)c. The first range begins
from index a, and the second range ends to index b. The parameter k is so chosen
that two 2k ranges cover the range [a,b] entirely.

As an example, consider the range [2,7]:
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1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

The length of the range [2,7] is 6, and blog2(6)c = 2. Thus, the minimum can be
calculated from two ranges of length 4. The ranges are [2,5] and [4,7]:

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

The minimum of the range [2,5] is 3, and the minimum of the range [4,7] is 1.
Thus, the minimum of the range [2,7] is 1.

9.2 Binary indexed tree
A binary indexed tree or a Fenwick tree is a data structure that resembles
a sum array. The supported operations are answering a sum query for range
[a,b], and updating the element at index k. The time complexity for both of the
operations is O(logn).

Unlike a sum array, a binary indexed tree can be efficiently updated between
the sum queries. This would not be possible using a sum array because we should
build the whole sum array again in O(n) time after each update.

Structure

A binary indexed tree can be represented as an array where index k contains the
sum of a range in the original array that ends to index k. The length of the range
is the largest power of two that divides k. For example, if k = 6, the length of the
range is 2 because 2 divides 6 but 4 doesn’t divide 6.

For example, for the array

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

the corresponding binary indexed tree is as follows:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8
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For example, the binary indexed tree contains the value 7 at index 6 because
the sum of the elements in the range [5,6] of the original array is 6+1= 7.

Sum query

The basic operation in a binary indexed tree is calculating the sum of a range
[1,k] where k is any index in the array. The sum of any range can be constructed
by combining sums of subranges in the tree.

For example, the range [1,7] will be divided into three subranges:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Thus, the sum of the range [1,7] is 16+7+4= 27. Because of the structure of
the binary indexed tree, the length of each subrange inside a range is distinct, so
the sum of a range always consists of sums of O(logn) subranges.

Using the same technique that we previously used with a sum array, we can
efficiently calculate the sum of any range [a,b] by substracting the sum of the
range [1,a−1] from the sum of the range [1,b]. The time complexity remains
O(logn) because it suffices to calculate two sums of [1,k] ranges.

Array update

When an element in the original array changes, several sums in the binary
indexed tree change. For example, if the value at index 3 changes, the sums of
the following ranges change:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Also in this case, the length of each range is distinct, so O(logn) ranges will
be updated in the binary indexed tree.
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Implementation

The operations of a binary indexed tree can be implemented in an elegant and
efficient way using bit manipulation. The bit operation needed is k&− k that
returns the last bit one from number k. For example, 6&−6 = 2 because the
number 6 corresponds to 110 and the number 2 corresponds to 10.

It turns out that when calculating a range sum, the index k in the binary
indexed tree should be decreased by k&−k at every step. Correspondingly, when
updating the array, the index k should be increased by k&−k at every step.

The following functions assume that the binary indexed tree is stored to array
b and it consists of indices 1 . . .n.

The function sum calculates the sum of the range [1,k]:

int sum(int k) {
int s = 0;
while (k >= 1) {

s += b[k];
k -= k&-k;

}
return s;

}

The function add increases the value of element k by x:

void add(int k, int x) {
while (k <= n) {

b[k] += x;
k += k&-k;

}
}

The time complexity of both above functions is O(logn) because the functions
change O(logn) values in the binary indexed tree and each move to the next index
takes O(1) time using the bit operation.

9.3 Segment tree

A segment tree is a data structure whose supported operations are handling
a range query for range [a,b] and updating the element at index k. Using a
segment tree, we can implement sum queries, minimum queries and many other
queries so that both operations work in O(logn) time.

Compared to a binary indexed tree, the advantage of a segment tree is that it
is a more general data structure. While binary indexed trees only support sum
queries, segment trees also support other queries. On the other hand, a segment
tree requires more memory and is a bit more difficult to implement.
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Structure

A segment tree contains 2n−1 nodes so that the bottom n nodes correspond to the
original array and the other nodes contain information needed for range queries.
The values in a segment tree depend on the supported query type. We will first
assume that the supported query is the sum query.

For example, the array

5 8 6 3 2 7 2 6

1 2 3 4 5 6 7 8

corresponds to the following segment tree:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Each internal node in the segment tree contains information about a range of
size 2k in the original array. In the above tree, the value of each internal node is
the sum of the corresponding array elements, and it can be calculated as the sum
of the values of its left and right child node.

It is convenient to build a segment tree when the size of the array is a power
of two and the tree is a complete binary tree. In the sequel, we will assume that
the tree is built like this. If the size of the array is not a power of two, we can
always extend it using zero elements.

Range query

In a segment tree, the answer for a range query is calculated from nodes that
belong to the range and are as high as possible in the tree. Each node gives the
answer for a subrange, and the answer for the entire range can be calculated by
combining these values.

For example, consider the following range:

5 8 6 3 2 7 2 6

1 2 3 4 5 6 7 8

The sum of elements in the range [3,8] is 6+3+2+7+2+6= 26. The sum can be
calculated from the segment tree using the following subranges:
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5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Thus, the sum of the range is 9+17= 26.
When the answer for a range query is calculated using as high nodes as

possible, at most two nodes on each level of the segment tree are needed. Because
of this, the total number of nodes examined is only O(logn).

Array update

When an element in the array changes, we should update all nodes in the segment
tree whose value depends on the changed element. This can be done by travelling
from the bottom to the top in the tree and updating the nodes along the path.

The following picture shows which nodes in the segment tree change if the
element 7 in the array changes.

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

The path from the bottom of the segment tree to the top always consists of
O(logn) nodes, so updating the array affects O(logn) nodes in the tree.

Storing the tree

A segment tree can be stored as an array of 2N elements where N is a power
of two. From now on, we will assume that the indices of the original array are
between 0 and N −1.

The element at index 1 in the segment tree array contains the top node of the
tree, the elements at indices 2 and 3 correspond to the second level of the tree,
and so on. Finally, the elements beginning from index N contain the bottom level
of the tree, i.e., the actual content of the original array.

For example, the segment tree
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5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

can be stored as follows (N = 8):

39 22 17 13 9 9 8 5 8 6 3 2 7 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Using this representation, for a node at index k,

• the parent node is at index bk/2c,

• the left child node is at index 2k, and

• the right child node is at index 2k+1.

Note that this implies that the index of a node is even if it is a left child and odd
if it is a right child.

Functions

We assume that the segment tree is stored in the array p. The following function
calculates the sum of range [a,b]:

int sum(int a, int b) {
a += N; b += N;
int s = 0;
while (a <= b) {

if (a%2 == 1) s += p[a++];
if (b%2 == 0) s += p[b--];
a /= 2; b /= 2;

}
return s;

}

The function begins from the bottom of the tree and moves step by step
upwards in the tree. The function calculates the range sum to the variable s by
combining the sums in the tree nodes. The value of a node is added to the sum if
the parent node doesn’t belong to the range.

The function add increases the value of element k by x:
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void add(int k, int x) {
k += N;
p[k] += x;
for (k /= 2; k >= 1; k /= 2) {

p[k] = p[2*k]+p[2*k+1];
}

}

First the function updates the bottom level of the tree that corresponds to the
original array. After this, the function updates the values of all internal nodes in
the tree, until it reaches the root node of the tree.

Both operations in the segment tree work in O(logn) time because a segment
tree of n elements consists of O(logn) levels, and the operations move one level
forward at each step.

Other queries

Besides the sum query, the segment tree can support any range query where
the answer for range [a,b] can be efficiently calculated from ranges [a, c] and
[c+1,b] where c is some element between a and b. Such queries are, for example,
minimum and maximum, greatest common divisor, and bit operations.

For example, the following segment tree supports minimum queries:

5 8 6 3 1 7 2 6

5 3 1 2

3 1

1

In this segment tree, every node in the tree contains the smallest element in
the corresponding range of the original array. The top node of the tree contains
the smallest element in the array. The tree can be implemented like previously,
but instead of sums, minima are calculated.

Binary search in tree

The structure of the segment tree makes it possible to use binary search. For
example, if the tree supports the minimum query, we can find the index of the
smallest element in O(logn) time.

For example, in the following tree the smallest element is 1 that can be found
by following a path downwards from the top node:

90



9 5 7 1 6 2 3 2

5 1 2 2

1 2

1

9.4 Additional techniques

Index compression

A limitation in data structures that have been built upon an array is that the
elements are indexed using integers 1,2,3, etc. Difficulties arise when the indices
needed are large. For example, using the index 109 would require that the array
would contain 109 elements which is not realistic.

However, we can often bypass this limitation by using index compression
where the indices are redistributed so that they are integers 1,2,3, etc. This can
be done if we know all the indices needed during the algorithm beforehand.

The idea is to replace each original index x with index p(x) where p is a
function that redistributes the indices. We require that the order of the indices
doesn’t change, so if a < b, then p(a) < p(b). Thanks to this, we can conviently
perform queries despite the fact that the indices are compressed.

For example, if the original indices are 555, 109 and 8, the new indices are:

p(8) = 1
p(555) = 2
p(109) = 3

Range update

So far, we have implemented data structures that support range queries and
modifications of single values. Let us now consider a reverse situation where we
should update ranges and retrieve single values. We focus on an operation that
increases all elements in range [a,b] by x.

Surprisingly, we can use the data structures presented in this chapter also
in this situation. This requires that we change the array so that each element
indicates the change with respect to the previous element. For example, the array

3 3 1 1 1 5 2 2

1 2 3 4 5 6 7 8

becomes as follows:
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3 0 −2 0 0 4 −3 0

1 2 3 4 5 6 7 8

The original array is the sum array of the new array. Thus, any value in the
original array corresponds to a sum of elements in the new array. For example,
the value 6 at index 5 in the original array corresponds to the sum 3−2+4= 5.

The benefit in using the new array is that we can update a range by changing
just two elements in the new array. For example, if we want to increase the range
2 . . .5 by 5, it suffices to increase the element at index 2 by 5 and decrease the
element at index 6 by 5. The result is as follows:

3 5 −2 0 0 −1 −3 0

1 2 3 4 5 6 7 8

More generally, to increase the range a . . .b by x, we increase the element at
index a by x and decrease the element at index b+1 by x. The required operations
are calculating the sum in a range and updating a value, so we can use a binary
indexed tree or a segment tree.

A more difficult problem is to support both range queries and range updates.
In Chapter 28 we will see that this is possible as well.
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Chapter 10

Bit manipulation

A computer internally manipulates data as bits, i.e., as numbers 0 and 1. In
this chapter, we will learn how integers are represented as bits, and how bit
operations can be used for manipulating them. It turns out that there are many
uses for bit operations in the implementation of algorithms.

10.1 Bit representation

The bit representation of a number indicates which powers of two form the
number. For example, the bit representation of the number 43 is 101011 because
43= 25+23+21+20 where bits 0, 1, 3 and 5 from the right are ones, and all other
bits are zeros.

The length of a bit representation of a number in a computer is static, and
depends on the data type chosen. For example, the int type in C++ is usually a 32-
bit type, and an int number consists of 32 bits. In this case, the bit representation
of 43 as an int number is as follows:

00000000000000000000000000101011

The bit representation of a number is either signed or unsigned. The first
bit of a signed number is the sign (+ or −), and we can represent numbers
−2n−1 . . .2n−1 −1 using n bits. In an unsigned number, in turn, all bits belong to
the number and we can represent numbers 0 . . .2n −1 using n bits.

In an signed bit representation, the first bit of a nonnegative number is 0,
and the first bit of a negative number is 1. Two’s complement is used which
means that the opposite number of a number can be calculated by first inversing
all the bits in the number, and then increasing the number by one.

For example, the representation of −43 as an int number is as follows:

11111111111111111111111111010101

The connection between signed and unsigned numbers is that the representa-
tions of a signed number −x and an unsigned number 2n − x are equal. Thus, the
above representation corresponds to the unsigned number 232 −43.
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In C++, the numbers are signed as default, but we can create unsigned
numbers by using the keyword unsigned. For example, in the code

int x = -43;
unsigned int y = x;
cout << x << "\n"; // -43
cout << y << "\n"; // 4294967253

the signed number x =−43 becomes the unsigned number y= 232 −43.
If a number becomes too large or too small for the bit representation chosen,

it will overflow. In practice, in a signed representation, the next number after
2n−1 −1 is −2n−1, and in an unsigned representation, the next number after 2n−1

is 0. For example, in the code

int x = 2147483647
cout << x << "\n"; // 2147483647
x++;
cout << x << "\n"; // -2147483648

we increase 231 −1 by one to get −231.

10.2 Bit operations

And operation

The and operation x & y produces a number that has bit 1 in positions where
both the numbers x and y have bit 1. For example, 22 & 26 = 18 because

10110 (22)
& 11010 (26)
= 10010 (18)

Using the and operation, we can check if a number x is even because x & 1 =
0 if x is even, and x & 1 = 1 if x is odd.

Or operation

The or operation x | y produces a number that has bit 1 in positions where at
least one of the numbers x and y have bit 1. For example, 22 | 26 = 30 because

10110 (22)
| 11010 (26)
= 11110 (30)

Xor operation

The xor operation x ^ y produces a number that has bit 1 in positions where
exactly one of the numbers x and y have bit 1. For example, 22 ^ 26 = 12 because
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10110 (22)
^ 11010 (26)
= 01100 (12)

Not operation

The not operation ~x produces a number where all the bits of x have been
inversed. The formula ~x =−x−1 holds, for example, ~29=−30.

The result of the not operation at the bit level depends on the length of the
bit representation because the operation changes all bits. For example, if the
numbers are 32-bit int numbers, the result is as follows:

x = 29 00000000000000000000000000011101
~x = −30 11111111111111111111111111100010

Bit shifts

The left bit shift x << k produces a number where the bits of x have been moved
k steps to the left by adding k zero bits to the number. The right bit shift x >> k
produces a number where the bits of x have been moved k steps to the right by
removing k last bits from the number.

For example, 14 << 2 = 56 because 14 equals 1110, and it becomes 56 that
equals 111000. Correspondingly, 49 >> 3 = 6 because 49 equals 110001, and it
becomes 6 that equals 110.

Note that the left bit shift x << k corresponds to multiplying x by 2k, and the
right bit shift x >> k corresponds to dividing x by 2k rounding downwards.

Bit manipulation

The bits in a number are indexed from the right to the left beginning from zero.
A number of the form 1<< k contains a one bit in position k, and all other bits
are zero, so we can manipulate single bits of numbers using these numbers.

The kth bit in x is one if x & (1<< k)= (1<< k). The formula x | (1<< k) sets
the kth bit of x to one, the formula x & ~(1<< k) sets the kth bit of x to zero, and
the formula x ^ (1<< k) inverses the kth bit of x.

The formula x & (x−1) sets the last one bit of x to zero, and the formula x &
−x sets all the one bits to zero, except for the last one bit. The formula x | (x−1),
in turn, inverses all the bits after the last one bit.

Also note that a positive number x is of the form 2k if x & (x−1)= 0.

Additional functions

The g++ compiler contains the following functions for bit manipulation:

• __builtin_clz(x): the number of zeros at the beginning of the number

• __builtin_ctz(x): the number of zeros at the end of the number
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• __builtin_popcount(x): the number of ones in the number

• __builtin_parity(x): the parity (even or odd) of the number of ones

The following code shows how to use the functions:

int x = 5328; // 00000000000000000001010011010000
cout << __builtin_clz(x) << "\n"; // 19
cout << __builtin_ctz(x) << "\n"; // 4
cout << __builtin_popcount(x) << "\n"; // 5
cout << __builtin_parity(x) << "\n"; // 1

The functions support int numbers, but there are also long long versions of
the functions available with the prefix ll.

10.3 Bit representation of sets

Each subset of a set {0,1,2, . . . ,n−1} corresponds to a n bit number where the
one bits indicate which elements are included in the subset. For example, the bit
representation for {1,3,4,8} is 100011010 that equals 28 +24 +23 +21 = 282.

The bit representation of a set uses little memory because only one bit is
needed for the information whether an element belongs to the set. In addition,
we can efficiently manipulate sets that are stored as bits.

Set operations

In the following code, the variable x contains a subset of {0,1,2, . . . ,31}. The code
adds elements 1, 3, 4 and 8 to the set and then prints the elements in the set.

// x is an empty set
int x = 0;
// add numbers 1, 3, 4 and 8 to the set
x |= (1<<1);
x |= (1<<3);
x |= (1<<4);
x |= (1<<8);
// print the elements in the set
for (int i = 0; i < 32; i++) {

if (x&(1<<i)) cout << i << " ";
}
cout << "\n";

The output of the code is as follows:

1 3 4 8

Using the bit representation of a set, we can efficiently implement set opera-
tions using bit operations:
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• a & b is the intersection a∩b of a and b (this contains the elements that
are in both the sets)

• a | b is the union a∪b of a and b (this contains the elements that are at
least in one of the sets)

• a & (~b) is the difference a \ b of a and b (this contains the elements that
are in a but not in b)

The following code constructs the union of {1,3,4,8} and {3,6,8,9}:

// set {1,3,4,8}
int x = (1<<1)+(1<<3)+(1<<4)+(1<<8);
// set {3,6,8,9}
int y = (1<<3)+(1<<6)+(1<<8)+(1<<9);
// union of the sets
int z = x|y;
// print the elements in the union
for (int i = 0; i < 32; i++) {

if (z&(1<<i)) cout << i << " ";
}
cout << "\n";

The output of the code is as follows:

1 3 4 6 8 9

Iterating through subsets

The following code iterates through the subsets of {0,1, . . . ,n−1}:

for (int b = 0; b < (1<<n); b++) {
// process subset b

}

The following code goes through subsets with exactly k elements:

for (int b = 0; b < (1<<n); b++) {
if (__builtin_popcount(b) == k) {

// process subset b
}

}

The following code goes through the subsets of a set x:

int b = 0;
do {

// process subset b
} while (b=(b-x)&x);
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10.4 Dynamic programming

From permutations to subsets

Using dynamic programming, it is often possible to change iteration over permu-
tations into iteration over subsets. In this case, the dynamic programming state
contains a subset of a set and possibly some additional information.

The benefit in this technique is that n!, the number of permutations of an
n element set, is much larger than 2n, the number of subsets. For example, if
n = 20, then n! = 2432902008176640000 and 2n = 1048576. Thus, for certain
values of n, we can go through subsets but not through permutations.

As an example, let’s calculate the number of permutations of set {0,1, . . . ,n−1}
where the difference between any two successive elements is larger than one. For
example, there are two solutions for n = 4:

• (1,3,0,2)

• (2,0,3,1)

Let f (x,k) denote the number of permutations for a subset x where the last
number is k and the difference between any two successive elements is larger
than one. For example, f ({0,1,3},1)= 1 because there is a permutation (0,3,1),
and f ({0,1,3},3)= 0 because 0 and 1 can’t be next to each other.

Using f , the solution for the problem is the sum

n−1∑
i=0

f ({0,1, . . . ,n−1}, i).

The dynamic programming states can be stored as follows:

long long d[1<<n][n];

First, f ({k},k)= 1 for all values of k:

for (int i = 0; i < n; i++) d[1<<i][i] = 1;

After this, the other values can be calculated as follows:

for (int b = 0; b < (1<<n); b++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
if (abs(i-j) > 1 && (b&(1<<i)) && (b&(1<<j))) {

d[b][i] += d[b^(1<<i)][j];
}

}
}

}
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The variable b contains the bit representation of the subset, and the correspond-
ing permutation is of the form (. . . , j, i). It is required that the difference between
i and j is larger than 1, and the numbers belong to subset b.

Finally, the number of solutions can be calculated as follows to s:

long long s = 0;
for (int i = 0; i < n; i++) {

s += d[(1<<n)-1][i];
}

Sums of subsets

Let’s assume that every subset x of {0,1, . . . ,n−1} is assigned a value c(x), and
our task is to calculate for each subset x the sum

s(x)= ∑
y⊂x

c(y)

that corresponds to the sum

s(x)= ∑
y&x=y

c(y)

using bit operations. The following table gives an example of the values of the
functions when n = 3:

x c(x) s(x)
000 2 2
001 0 2
010 1 3
011 3 6
100 0 2
101 4 6
110 2 5
111 0 12

For example, s(110)= c(000)+ c(010)+ c(100)+ c(110)= 5.
The problem can be solved in O(2nn) time by defining a function f (x,k) that

calculates the sum of values c(y) where x can be converted into y by changing
any one bits in positions 0,1, . . . ,k to zero bits. Using this function, the solution
for the problem is s(x)= f (x,n−1).

The base cases for the function are:

f (x,0)=
{

c(x) if bit 0 in x is 0
c(x)+ c(x ^1) if bit 0 in x is 1

For larger values of k, the following recursion holds:

f (x,k)=
{

f (x,k−1) if bit k in x is 0
f (x,k−1)+ f (x ^(1<< k),k−1) if bit k in x is 1
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Thus, we can calculate the values for the function as follows using dynamic
programming. The code assumes that the array c contains the values for c, and
it constructs an array s that contains the values for s.

for (int x = 0; x < (1<<n); x++) {
f[x][0] = c[x];
if (x&1) f[x][0] += c[x^1];

}
for (int k = 1; k < n; k++) {

for (int x = 0; x < (1<<n); x++) {
f[x][k] = f[x][k-1];
if (b&(1<<k)) f[x][k] += f[x^(1<<k)][k-1];

}
if (k == n-1) s[x] = f[x][k];

}

Actually, a much shorter implementation is possible because we can calculate
the results directly to array s:

for (int x = 0; x < (1<<n); x++) s[x] = c[x];
for (int k = 0; k < n; k++) {

for (int x = 0; x < (1<<n); x++) {
if (x&(1<<k)) s[x] += s[x^(1<<k)];

}
}
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Part II

Graph algorithms
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Chapter 11

Basics of graphs

Many programming problems can be solved by interpreting the problem as a
graph problem and using a suitable graph algorithm. A typical example of a
graph is a network of roads and cities in a country. Sometimes, though, the graph
is hidden in the problem and it can be difficult to detect it.

This part of the book discusses techniques and algorithms involving graphs
that are important in competitive programming. We will first go through graph
terminology and different ways to store graphs in algorithms.

11.1 Terminology
A graph consists of nodes and edges between them. In this book, the variable n
denotes the number of nodes in a graph, and the variable m denotes the number
of edges. In addition, the nodes are numbered using integers 1,2, . . . ,n.

For example, the following graph contains 5 nodes and 7 edges:

1 2

3 4

5

A path is a route from node a to node b that goes through the edges in the
graph. The length of a path is the number of edges in the path. For example, in
the above graph, paths from node 1 to node 5 are:

• 1→ 2→ 5 (length 2)

• 1→ 4→ 5 (length 2)

• 1→ 2→ 4→ 5 (length 3)

• 1→ 3→ 4→ 5 (length 3)

• 1→ 4→ 2→ 5 (length 3)

• 1→ 3→ 4→ 2→ 5 (length 4)

103



Connectivity

A graph is connected, if there is path between any two nodes. For example, the
following graph is connected:

1 2

3 4

The following graph is not connected because it is not possible to get to other
nodes from node 4.

1 2

3 4

The connected parts of a graph are its components. For example, the follow-
ing graph contains three components: {1, 2, 3}, {4, 5, 6, 7} and {8}.

1 2

3 6 7

4 5

8

A tree is a connected graph that contains n nodes and n−1 edges. In a tree,
there is a unique path between any two nodes. For example, the following graph
is a tree:

1 2

3 4

5

Edge directions

A graph is directed if the edges can be travelled only in one direction. For
example, the following graph is directed:

1 2

3 4

5
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The above graph contains a path from node 3 to 5 using edges 3→ 1→ 2→ 5.
However, the graph doesn’t contain a path from node 5 to 3.

A cycle is a path whose first and last node is the same. For example, the
above graph contains a cycle 1→ 2→ 4→ 1. If a graph doesn’t contain any cycles,
it is called acyclic.

Edge weights

In a weighted graph, each edge is assigned a weight. Often, the weights are
interpreted as edge lengths. For example, the following graph is weighted:

1 2

3 4

5

5

1

7

6

7

3

Now the length of a path is the sum of edge weights. For example, in the above
graph the length of path 1→ 2→ 5 is 12, and the length of path 1→ 3→ 4→ 5 is
11. The latter is the shortest path from node 1 to node 5.

Neighbors and degrees

Two nodes are neighbors or adjacent if there is a edge between them. The
degree of a node is the number of its neighbors. For example, in the following
graph, the neighbors of node 2 are 1, 4 and 5, so its degree is 3.

1 2

3 4

5

The sum of degrees in a graph is always 2m where m is the number of edges.
The reason for this is that each edge increases the degree of two nodes by one.
Thus, the sum of degrees is always even.

A graph is regular if the degree of every node is a constant d. A graph is
complete if the degree of every node is n−1, i.e., the graph contains all possible
edges between the nodes.

In a directed graph, the indegree and outdegree of a node is the number of
edges that end and begin at the node, respectively. For example, in the following
graph, node 2 has indegree 2 and outdegree 1.

1 2

3 4

5
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Colorings

In a coloring of a graph, each node is assigned a color so that no adjacent nodes
have the same color.

A graph is bipartite if it is possible to color it using two colors. It turns out
that a graph is bipartite exactly when it doesn’t contain a cycle with odd number
of edges. For example, the graph

2 3

5 64

1

is bipartite because we can color it as follows:

2 3

5 64

1

Simplicity

A graph is simple if no edge begins and ends at the same node, and there are
no multiple edges between two nodes. Often we will assume that the graph is
simple. For example, the graph

2 3

5 64

1

is not simple because there is an edge that begins and ends at node 4, and there
are two edges between nodes 2 and 3.

11.2 Graph representation

There are several ways how to represent graphs in memory in an algorithm. The
choice of a data structure depends on the size of the graph and how the algorithm
manipulates it. Next we will go through three representations.

Adjacency list representation

A usual way to represent a graph is to create an adjacency list for each node.
An adjacency list contains contains all nodes that can be reached from the node
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using a single edge. The adjacency list representation is the most popular way to
store a graph, and most algorithms can be efficiently implemented using it.

A good way to store the adjacency lists is to allocate an array whose each
element is a vector:

vector<int> v[N];

The adjacency list for node s is in position v[s] in the array. The constant N is
so chosen that all adjacency lists can be stored. For example, the graph

1 2 3

4

can be stored as follows:

v[1].push_back(2);
v[2].push_back(3);
v[2].push_back(4);
v[3].push_back(4);
v[4].push_back(1);

If the graph is undirected, it can be stored in a similar way, but each edge
each is store in both directions.

For an weighted graph, the structure can be extended as follows:

vector<pair<int,int>> v[N];

Now each adjacency list contains pairs whose first element is the target node,
and the second element is the edge weight. For example, the graph

1 2 3

4

5 7

6 52

can be stored as follows:

v[1].push_back({2,5});
v[2].push_back({3,7});
v[2].push_back({4,6});
v[3].push_back({4,5});
v[4].push_back({1,2});
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The benefit in the adjacency list representation is that we can efficiently find
the nodes that can be reached from a certain node. For example, the following
loop goes trough all nodes that can be reached from node s:

for (auto u : v[s]) {
// process node u

}

Adjacency matrix representation

An adjacency matrix is a two-dimensional array that indicates for each possible
edge if it is included in the graph. Using an adjacency matrix, we can efficiently
check if there is an edge between two nodes. On the other hand, the matrix takes
a lot of memory if the graph is large. We can store the matrix as an array

int v[N][N];

where the value v[a][b] indicates whether the graph contains an edge from node
a to node b. If the edge is included in the graph, then v[a][b]= 1, and otherwise
v[a][b]= 0. For example, the graph

1 2 3

4

can be represented as follows:

1 0 0 0

0 0 0 1

0 0 1 1

0 1 0 0

4

3

2

1

1 2 3 4

If the graph is directed, the adjacency matrix representation can be extended
so that the matrix contains the weight of the edge if the edge exists. Using this
representation, the graph

1 2 3

4

5 7

6 52
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corresponds to the following matrix:

2 0 0 0

0 0 0 5

0 0 7 6

0 5 0 0

4

3

2

1

1 2 3 4

Edge list representation

An edge list contains all edges of a graph. This is a convenient way to represent
a graph, if the algorithm will go trough all edges of the graph, and it is not needed
to find edges that begin at a given node.

The edge list can be stored in a vector

vector<pair<int,int>> v;

where each element contains the starting and ending node of an edge. Thus, the
graph

1 2 3

4

can be represented as follows:

v.push_back({1,2});
v.push_back({2,3});
v.push_back({2,4});
v.push_back({3,4});
v.push_back({4,1});

If the graph is weighted, we can extend the structure as follows:

vector<pair<pair<int,int>,int>> v;

Now the list contains pairs whose first element contains the starting and ending
node of an edge, and the second element corresponds to the edge weight. For
example, the graph

1 2 3

4

5 7

6 52

109



can be represented as follows:

v.push_back({{1,2},5});
v.push_back({{2,3},7});
v.push_back({{2,4},6});
v.push_back({{3,4},5});
v.push_back({{4,1},2});
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Chapter 12

Graph search

This chapter introduces two fundamental graph algorithms: depth-first search
and breadth-first search. Both algorithms are given a starting node in the graph,
and they visit all nodes that can be reached from the starting node. The difference
in the algorithms is the order in which they visit the nodes.

12.1 Depth-first search
Depth-first search (DFS) is a straightforward graph search technique. The
algorithm begins at a starting node, and proceeds to all other nodes that are
reachable from the starting node using the edges in the graph.

Depth-first search always follows a single path in the graph as long as it finds
new nodes. After this, it returns back to previous nodes and begins to explore
other parts of the graph. The algorithm keeps track of visited nodes, so that it
processes each node only once.

Example

Let’s consider how depth-first search processes the following graph:

1 2

3

4 5

The algorithm can begin at any node in the graph, but we will now assume that
it begins at node 1.

The search first proceeds to node 2:

1 2

3

4 5
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After this, nodes 3 and 5 will be visited:

1 2

3

4 5

The neighbors of node 5 are 2 and 3, but the search has already visited both of
them, so it’s time to return back. Also the neighbors of nodes 3 and 2 have been
visited, so we’ll next proceed from node 1 to node 4:

1 2

3

4 5

After this, the search terminates because it has visited all nodes.
The time complexity of depth-first search is O(n+m) where n is the number

of nodes and m is the number of edges, because the algorithm processes each
node and edge once.

Implementation

Depth-first search can be conveniently implemented using recursion. The fol-
lowing function dfs begins a depth-first search at a given node. The function
assumes that the graph is stored as adjacency lists in array

vector<int> v[N];

and also maintains an array

int z[N];

that keeps track of the visited nodes. Initially, each array value is 0, and when
the search arrives at node s, the value of z[s] becomes 1. The function can be
implemented as follows:

void dfs(int s) {
if (z[s]) return;
z[s] = 1;
// process node s
for (auto u: v[s]) {

dfs(u);
}

}
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12.2 Breadth-first search

Breadth-first search (BFS) visits the nodes in increasing order of their distance
from the starting node. Thus, we can calculate the distance from the starting
node to all other nodes using breadth-first search. However, breadth-first search
is more difficult to implement than depth-first search.

Breadth-first search goes through the nodes one level after another. First the
search explores the nodes whose distance from the starting node is 1, then the
nodes whose distance is 2, and so on. This process continues until all nodes have
been visited.

Example

Let’s consider how the algorithm processes the following graph:

1 2 3

4 5 6

Assume again that the search begins at node 1. First, we process all nodes that
can be reached from node 1 using a single edge:

1 2 3

4 5 6

After this, we procees to nodes 3 and 5:

1 2 3

4 5 6

Finally, we visit node 6:

1 2 3

4 5 6
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Now we have calculated the distances from the starting node to all nodes in the
graph. The distances are as follows:

node distance
1 0
2 1
3 2
4 1
5 2
6 3

Like in depth-first search, the time complexity of breadth-first search is
O(n+m) where n is the number of nodes and m is the number of edges.

Implementation

Breadth-first search is more difficult to implement than depth-first search be-
cause the algorithm visits nodes in different parts in the graph. A typical
implementation is to maintain a queue of nodes to be processed. At each step,
the next node in the queue will be processed.

The following code begins a breadth-first search at node x. The code assumes
that the graph is stored as adjacency lists and maintains a queue

queue<int> q;

that contains the nodes in increasing order of their distance. New nodes are
always added to the end of the queue, and the node at the beginning of the queue
is the next node to be processed.

In addition, the code uses arrays

int z[N], e[N];

so that array z indicates which nodes the search already has visited and array e
will contain the minimum distance to all nodes in the graph. The search can be
implemented as follows:

z[s] = 1; e[x] = 0;
q.push(x);
while (!q.empty()) {

int s = q.front(); q.pop();
// process node s
for (auto u : v[s]) {

if (z[u]) continue;
z[u] = 1; e[u] = e[s]+1;
q.push(u);

}
}
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12.3 Applications

Using the graph search algorithms, we can check many properties of the graph.
Usually, either depth-first search or bredth-first search can be used, but in
practice, depth-first search is a better choice because it is easier to implement. In
the following applications we will assume that the graph is undirected.

Connectivity check

A graph is connected if there is a path between any two nodes in the graph. Thus,
we can check if a graph is connected by selecting an arbitrary node and finding
out if we can reach all other nodes.

For example, in the graph

21

3

54

a depth-first search from node 1 visits the following nodes:

21

3

54

Since the search didn’t visit all the nodes, we can conclude that the graph is
not connected. In a similar way, we can also find all components in a graph by
iterating trough the nodes and always starting a new depth-first search if the
node doesn’t belong to a component.

Finding cycles

A graph contains a cycle if during a graph search, we find a node whose neighbor
(other than the previous node in the current path) has already been visited. For
example, the graph

21

3

54
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contains a cycle because when we move from node 2 to node 5 it turns out that
the neighbor node 3 has already been visited. Thus, the graph contains a cycle
that goes through node 3, for example, 3→ 2→ 5→ 3.

Another way to find out whether a graph contains a cycle is to simply calculate
the number of nodes and edges in every component. If a component contains c
nodes and no cycle, it must contain exactly c−1 edges. If there are c or more
edges, the component always contains a cycle.

Bipartiteness check

A graph is bipartite if its nodes can be colored using two colors so that there are
no adjacent nodes with same color. It is suprisingly easy to check if a graph is
bipartite using graph search algorithms.

The idea is to color the starting node blue, all its neighbors red, all their
neighbors blue, and so on. If at some point of the search we notice that two
adjacent nodes have the same color, this means that the graph is not bipartite.
Otherwise the graph is bipartite and one coloring has been found.

For example, the graph

21

3

54

is not bipartite because a search from node 1 produces the following situation:

21

3

54

We notice that the color or both node 2 and node 5 is red, while they are adjacent
nodes in the graph. Thus, the graph is not bipartite.

This algorithm always works because when there are only two colors available,
the color of the starting node in a component determines the colors of all other
nodes in the component. It doesn’t make any difference whether the starting
node is red or blue.

Note that in the general case, it is difficult to find out if the nodes in a graph
can be colored using k colors so that no adjacent nodes have the same color. Even
when k = 3, no efficient algorithm is known but the problem is NP-hard.
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Chapter 13

Shortest paths

Finding the shortest path between two nodes is an important graph problem that
has many applications in practice. For example, a natural problem in a road
network is to calculate the length of the shorthest route between two cities, given
the lengths of the roads.

In an unweighted graph, the length of a path equals the number of edges in
the path and we can simply use breadth-first search for finding the shortest path.
However, in this chapter we concentrate on weighted graphs. In this case we
need more sophisticated algorithms for finding shortest paths.

13.1 Bellman–Ford algorithm
The Bellman–Fordin algoritmi finds the shortest path from a starting node to
all other nodes in the graph. The algorithm works in all kinds of graphs, provided
that the graph doesn’t contain a cycle with negative length. If the graph contains
a negative cycle, the algorithm can detect this.

The algorithm keeps track of estimated distances from the starting node to
other nodes. Initially, the estimated distance is 0 to the starting node and infinite
to all other nodes. The algorithm improves the estimates by finding edges that
shorten the paths until it is not possible to improve any estimate.

Example

Let’s consider how the Bellman–Ford algorithm works in the following graph:

1 2

3 4

5

0 ∞

∞ ∞

∞

2

3

−2

3

5

2

7

Each node in the graph is assigned an estimated distance. Initially, the distance
is 0 to the starting node and infinite to all other nodes.
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The algorithm searches for edges that improve the estimated distances. First,
all edges from node 1 improve the estimates:

1 2

3 4

5

0 2

3 7

∞

2

3

−2

3

5

2

7

After this, edges 2→ 5 and 3→ 4 improve the estimates:

1 2

3 4

5

0 2

3 1

7

2

3

−2

3

5

2

7

Finally, there is one more improvment:

1 2

3 4

5

0 2

3 1

3

2

3

−2

3

5

2

7

After this, no edge improves the estimates. This means that the distances are
final and we have successfully calculated the shortest distance from the starting
node to all other nodes.

For example, the smallest distance 3 from node 1 to node 5 corresponds to the
following path:

1 2

3 4

5

0 2

3 1

3

2

3

−2

3

5

2

7
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Implementation

The following implementation of the Bellman–Ford algorithm finds the shortest
paths from a node x to all other nodes in the graph. The code assumes that the
graph is stored as adjacency lists in array

vector<pair<int,int>> v[N];

so that each pair contains the target node and the edge weight.
The algorithm consists of n−1 rounds, and on each round the algorithm goes

through all nodes in the graph and tries to improve the estimated distances. The
algorithm builds an array e that will contain the distance from x to all nodes in
the graph. The initial value 109 means infinity.

for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
for (int i = 1; i <= n-1; i++) {

for (int a = 1; a <= n; a++) {
for (auto b : v[a]) {

e[b.first] = min(e[b.first],e[a]+b.second);
}

}
}

The time complexity of the algorithm is O(nm) because it consists of n−1
rounds and iterates through all m nodes during a round. If there are no negative
cycles in the graph, all distances are final after n−1 rounds because each shortest
path can contain at most n−1 edges.

In practice, the final distances can usually be found much faster than in n−1
rounds. Thus, a possible way to make the algorithm more efficient is to stop the
algorithm if we can’t improve any distance during a round.

Negative cycle

Using the Bellman–Ford algorithm we can also check if the graph contains a
cycle with negative length. For example, the graph

1

2

3

4

3 1

5 −7

2

contains a negative cycle 2→ 3→ 4→ 2 with length −4.
If the graph contains a negative cycle, we can shorten a path that contains

the cycle infinitely many times by repeating the cycle again and again. Thus, the
concept of a shortest path is not meaningful here.

A negative cycle can be detected using the Bellman–Ford algorithm by running
the algorithm for n rounds. If the last round improves any distance, the graph
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contains a negative cycle. Note that this algorithm searches for a negative cycle
in the whole graph regardless of the starting node.

SPFA algorithm

The SPFA algoritmi (”Shortest Path Faster Algorithm”) is a variation for the
Bellman–Ford algorithm, that is often more efficient than the original algorithm.
It doesn’t go through all the edges on each round, but instead, it chooses the
edges to be examined in a more intelligent way.

The algorithm maintains a queue of nodes that might be used for improving
the distances. First, the algorithm adds the starting node x to the queue. Then,
the algorithm always processes the first node in the queue, and when an edge
a → b improves a distance, node b is added to the end of the queue.

The following implementation uses a queue structure q. In addition, array z
indicates if a node is already in the queue, in which case the algorithm doesn’t
add the node to the queue again.

for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
q.push(x);
while (!q.empty()) {

int a = q.front(); q.pop();
z[a] = 0;
for (auto b : v[a]) {

if (e[a]+b.second < e[b.first]) {
e[b.first] = e[a]+b.second;
if (!z[b]) {q.push(b); z[b] = 1;}

}
}

}

The efficiency of the SPFA algorithm depends on the structure of the graph:
the algorithm is usually very efficient, but its worst case time complexity is still
O(nm) and it is possible to create inputs that make the algorithm as slow as the
standard Bellman–Ford algorithm.

13.2 Dijkstra’s algorithm

Dijkstra’s algorithm finds the shortest paths from the starting node to all other
nodes, like the Bellman–Ford algorithm. The benefit in Dijsktra’s algorithm is
that it is more efficient and can be used for processing large graphs. However,
the algorithm requires that there are no negative weight edges in the graph.

Like the Bellman–Ford algorithm, Dijkstra’s algorithm maintains estimated
distances for the nodes and improves them during the algorithm. Dijkstra’s
algorithm is efficient because it only processes each edge in the graph once, using
the fact that there are no negative edges.
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Example

Let’s consider how Dijkstra’s algorithm works in the following graph when the
starting node is node 1:

3 4

2 1

5

∞ ∞

∞ 0

∞

6

2

5

9

2

1

Like in the Bellman–Ford algorithm, the estimated distance is 0 to the starting
node and infinite to all other nodes.

At each step, Dijkstra’s algorithm selects a node that has not been processed
yet and whose estimated distance is as small as possible. The first such node is
node 1 with distance 0.

When a node is selected, the algorithm goes through all edges that begin from
the node and improves the distances using them:

3 4

2 1

5

∞ 9

5 0

1

6

2

5

9

2

1

The edges from node 1 improved distances to nodes 2, 4 and 5 whose now distances
are now 5, 9 and 1.

The next node to be processed is node 5 with distance 1:

3 4

2 1

5

∞ 3

5 0

1

6

2

5

9

2

1

After this, the next node is node 4:

3 4

2 1

5

9 3

5 0

1

6

2

5

9

2

1
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A nice property in Dijkstra’s algorithm is that whenever a node is selected,
its distance is final. For example, at this point of the algorithm, the distances 0,
1 and 3 are the final distances to nodes 1, 5 and 4.

After this, the algorithm processes the two remaining nodes, and the final
distances are as follows:

3 4

2 1

5

7 3

5 0

1

6

2

5

9

2

1

Negative edges

The efficiency of Dijkstra’s algorithm is based on the fact that the graph doesn’t
contain negative edges. If there is a negative edge, the algorithm may give
incorrect results. As an example, consider the following graph:

1

2

3

4

2 3

6 −5

The shortest path from node 1 to node 4 is 1→ 3→ 4, and its length is 1. However,
Dijkstra’s algorithm finds the path 1→ 2→ 4 by following the lightest edges. The
algorithm cannot recognize that in the lower path, the weight −5 compensates
the previous large weight 6.

Implementation

The following implementation of Dijkstra’s algorithm calculates the minimum
distance from a node x to all other nodes. The graph is stored in an array v as
adjacency lists that contain target nodes and weights for each edge.

An efficient implementation of Dijkstra’s algorithm requires that it is possible
to quickly find the smallest node that has not been processed. A suitable data
structure for this is a priority queue that contains the nodes ordered by the
estimated distances. Using a priority queue, the next node to be processed can be
retrieved in logarithmic time.

In the following implementation, the priority queue contains pairs whose first
element is the estimated distance and second element is the identifier of the
corresponding node.

priority_queue<pair<int,int>> q;
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A small difficulty is that in Dijkstra’s algorithm, we should find the node with
minimum distance, while the C++ priority queue finds the maximum element as
default. An easy solution is to use negative distances, so we can directly use the
C++ priority queue.

The code keeps track of processed nodes in array z, and maintains estimated
distances in array e. Initially, the distance to the starting node is 0, and the
distance to all other nodes is 109 that corresponds to infinity.

for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
q.push({0,x});
while (!q.empty()) {

int a = q.top().second; q.pop();
if (z[a]) continue;
z[a] = 1;
for (auto b : v[a]) {

if (e[a]+b.second < e[b]) {
e[b] = e[a]+b.second;
q.push({-e[b],b});

}
}

}

The time complexity of the above implementation is O(n+m logm) because
the algorithm goes through all nodes in the graph, and adds for each edge at
most one estimated distance to the priority queue.

13.3 Floyd–Warshall algorithm
The Floyd–Warshall algorithm is an alternative way to approach the problem
of finding shortest paths. Unlike other algorihms in this chapter, it finds all
shortest paths between the nodes in a single run.

The algorithm maintains a two-dimensional array that contains distances
between the nodes. First, the distances are calculated only using direct edges
between the nodes. After this the algorithm updates the distances by allowing to
use intermediate nodes in the paths.

Example

Let’s consider how the Floyd–Warshall algorithm works in the following graph:

3 4

2 1

5

7

2

5

9

2

1
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Initially, the distance from each node to itself is 0, and the distance between
nodes a and b is x if there is an edge between nodes a and b with weight x. All
other distances are infinite.

In this graph, the initial array is as follows:

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 ∞ ∞
3 ∞ 2 0 7 ∞
4 9 ∞ 7 0 2
5 1 ∞ ∞ 2 0

The algorithm consists of successive rounds. On each round, one new node is
selected that can act as intermediate node in paths, and the algorithm improves
the distances in the array using this node.

On the first round, node 1 is the intermediate node. Now there is a new
path between nodes 2 and 4 with length 14 because node 1 connects them.
Correspondingly, there is a new path between nodes 2 and 5 with length 6.

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 14 6
3 ∞ 2 0 7 ∞
4 9 14 7 0 2
5 1 6 ∞ 2 0

On the second round, node 2 is the intermediate node. This creates new paths
between nodes 1 and 3, and between nodes 3 and 5:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 14 6
3 7 2 0 7 8
4 9 14 7 0 2
5 1 6 8 2 0

On the third round, node 3 is the intermediate round. There is a new path
between nodes 2 and 4:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 9 6
3 7 2 0 7 8
4 9 9 7 0 2
5 1 6 8 2 0
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The algorithm continues like this, until all nodes have been intermediate
nodes. After the algorithm has finished, the array contains the minimum distance
between any two nodes:

1 2 3 4 5
1 0 5 7 3 1
2 5 0 2 9 6
3 7 2 0 7 8
4 3 9 7 0 2
5 1 6 8 2 0

For example, the array indicates that the shortest path between nodes 2 and
4 has length 8. This corresponds to the following path:

3 4

2 1

5

7

2

5

9

2

1

Implementation

The benefit in the Floyd–Warshall algorithm that it is easy to implement. The
following code constructs a distance matrix d where d[a][b] is the smallest dis-
tance in a path between nodes a and b. First, the algorithm initializes d using
the adjacency matrix v of the graph (value 109 means infinity):

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

if (i == j) d[i][j] = 0;
else if (v[i][j]) d[i][j] = v[i][j];
else d[i][j] = 1e9;

}
}

After this, the shortest paths can be found as follows:

for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
d[i][j] = min(d[i][j], d[i][k]+d[k][j]);

}
}

}

The time complexity of the algorithm is O(n3) because it contains three nested
loops that go through the nodes in the graph.
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Since the implementation of the Floyd–Warshall algorithm is simple, the
algorithm can be a good choice even if we need to find only a single shortest path
in the graph. However, this is only possible when the graph is so small that a
cubic time complexity is enough.
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Chapter 14

Tree algorithms

A tree is a connected, acyclic graph that contains n nodes and n− 1 edges.
Removing any edge from a tree divides it into two components, and adding any
edge to a tree creates a cycle. Moreover, there is always a unique path between
any two nodes in a tree.

For example, the following tree contains 7 nodes and 6 edges:

1 2

4 5 6

7

3

The leaves of a tree are nodes with degree 1, i.e., with only one neighbor. For
example, the leaves in the above tree are nodes 3, 5, 6 and 7.

In a rooted tree, one of the nodes is chosen to be a root, and all other nodes
are placed underneath the root. For example, in the following tree, node 1 is the
root of the tree.

1

24 5

63 7

In a rooted tree, the childern of a node are its lower neighbors, and the
parent of a node is its upper neighbor. Each node has exactly one parent, except
that the root doesn’t have a parent. For example, in the above tree, the childern
of node 4 are nodes 3 and 7, and the parent is node 1.

The structure of a rooted tree is recursive: each node in the tree is the root of
a subtree that contains the node itself and all other nodes that can be reached
by travelling downwards in the tree. For example, in the above tree, the subtree
of node 4 contains nodes 4, 3 and 7.
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14.1 Tree search

Depth-first search and breadth-first search can be used for going through the
nodes in a tree. However, the search is easier to implement than for a general
graph, because there are no cycles in the tree, and it is not possible that the
search would visit a node several times.

Often, we start a depth-first search from a chosen root node. The following
recursive function implements it:

void dfs(int s, int e) {
// process node s
for (auto u : v[s]) {

if (u != e) dfs(u, s);
}

}

The function parameters are the current node s and the previous node e. The
idea of the parameter e is to ensure that the search only proceeds downwards in
the tree towards nodes that have not been visited yet.

The following function call starts the search at node x:

dfs(x, 0);

In the first call e = 0 because there is no previous node, and it is allowed to
proceed to any direction in the tree.

Dynamic programming

We can also use dynamic programming to calculate some information from the
tree during the search. Using dynamic programming, we can, for example,
calculate in O(n) time for each node the number of nodes in its subtree, or the
length of the longest path downwards that begins at the node.

As an example, let’s calculate for each node s a value c[s]: the number of
nodes in its subtree. The subtree contains the node itself and all nodes in the
subtrees of its children. Thus, we can calculate the number of nodes recursively
using the following code:

void haku(int s, int e) {
c[s] = 1;
for (auto u : v[s]) {

if (u == e) continue;
haku(u, s);
c[s] += c[u];

}
}

128



14.2 Diameter

The diameter of a tree is the length of the longest path between two nodes in
the tree. For example, in the tree

1 2

4 5 6

7

3

the diameter is 4, and it corresponds to two paths: the path between nodes 3 and
6, and the path between nodes 7 and 6.

Next we will learn two efficient algorithms for calculating the diameter of a
tree. Both algorithms calculate the diameter in O(n) time. The first algorithm is
based on dynamic programming, and the second algorithm uses two depth-first
searches to calculate the diameter.

Algorithm 1

First, one of the nodes is chosen to be the root. After this, the algorithm calculates
for each node the length of the longest path that begins at some leaf, ascends to
the node and then descends to another leaf. The length of the longest such path
equals the diameter of the tree.

In the example case, the longest path begins at node 7, ascends to node 1, and
then descends to node 6:

1

24 5

63 7

The algorithm first calculates using dynamic programming for each node the
length of the longest path that goes downwards from the node. For example, in
the above tree, the longest path from node 1 downwards has length 2 (the path
can be 1→ 4→ 3, 1→ 4→ 7 or 1→ 2→ 6).

After this, the algorithm calculates for each node the length of the longest
path where the node is the turning point of the path. The longest such path can
be found by selecting two children with longest paths downwards. For example,
in the above graph, nodes 2 and 4 are chosen for node 1.
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Algorithm 2

Another efficient way to calculate the diameter of a tree is based on two depth-
first searches. First, we choose an arbitrary node a in the tree and find a node b
with maximum distance to a. Then, we find a node c with maximum distance to
b. The diameter is the distance between nodes b and c.

In the example case, a, b and c could be:

1 2

4 5 6

7

3
a

b

c

This is an elegant method, but why does it work?
It helps to draw the tree differently so that the path that corresponds to the

diameter is horizontal, and all other nodes hang from it:

1 24

5

6

3

7

a

b cx

Node x indicates the place where the path from node a joins the path that
corresponds to the diameter. The farthest node from a is node b, node c or some
other node that is at least as far from node x. Thus, this node can always be
chosen for a starting node of a path that corresponds to the diameter.

14.3 Distances between nodes

A more difficult problem is to calculate for each node in the tree and for each
direction, the maximum distance to a node in that direction. It turns out that
this can be calculated in O(n) time as well using dynamic programming.

In the example case, the distances are as follows:

1 2

4 5 6

7

3

2

12

3
1

4

14

3

3 4

1

For example, the furthest node from node 4 upwards is node 6, and the distance
to this node is 3 using the path 4→ 1→ 2→ 6.
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Also in this problem, a good starting point is to root the tree. After this, all
distances downwards can be calculated using dynamic programming:

1

24 5

63 7

1 1 1

2
1

2

The remaining task is to calculate the distances upwards. This can be done
by going through the nodes once again and keeping track of the largest distance
from the parent of the current node to some other node in another direction.

For example, the distance from node 2 upwards is one larger than the distance
from node 1 downwards in some other direction than node 2:

1

24 5

63 7

Finally, we can calculate the distances for all nodes and all directions:

1

24 5

63 7

1 1 1

2
1

2

4 4

3 3

4

3

14.4 Binary trees

A binary tree is a rooted tree where each node has a left subtree and a right
subtree. It is possible that a subtree of a node is empty. Thus, every node in a
binary tree has 0, 1 or 2 children.
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For example, the following tree is a binary tree:

1

2 3

4 5

6

7

The nodes in a binary tree have three natural orders that correspond to
different ways to recursively traverse the nodes:

• pre-order: first process the root, then traverse the left subtree, then
traverse the right subtree

• in-order: first traverse the left subtree, then process the root, then traverse
the right subtree

• post-order: first traverse the left subtree, then traverse the right subtree,
then process the root

For the above tree, the nodes in pre-order are [1,2,4,5,6,3,7], in in-order
[4,2,6,5,1,3,7] and in post-order [4,6,5,2,7,3,1].

If we know the pre-order and the in-order of a tree, we can find out the
exact structure of the tree. For example, the tree above is the only possible tree
with pre-order [1,2,4,5,6,3,7] and in-order [4,2,6,5,1,3,7]. Correspondingly, the
post-order and the in-order also determine the structure of a tree.

However, the situation is different if we only know the pre-order and the
post-order of a tree. In this case, there may be more than one tree that match the
orders. For example, in both of the trees

1

2

1

2

the pre-order is [1,2] and the post-order is [2,1] but the trees have different
structures.
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Chapter 15

Spanning trees

A spanning tree is a set of edges of a graph such that there is a path between
any two nodes in the graph using only the edges in the spanning tree. Like trees
in general, a spanning tree is connected and acyclic. Usually, there are many
ways to construct a spanning tree.

For example, in the graph

1

2 3

4

5 6

3
5

9

5
2

7

6 3

one possible spanning tree is as follows:

1

2 3

4

5 6

3
5

9

2

3

The weight of a spanning tree is the sum of the edge weights. For example,
the weight of the above spanning tree is 3+5+9+3+2= 22.

A minimum spanning tree is a spanning tree whose weight is as small as
possible. The weight of a minimum spanning tree for the above graph is 20, and
a tree can be constructed as follows:

1

2 3

4

5 6

3

5
2

7

3
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Correspondingly, a maximum spanning tree is a spanning tree whose
weight is as large as possible. The weight of a maximum spanning tree for the
above graph is 32:

1

2 3

4

5 6

5
9

5 7

6

Note that there may be several different ways for constructing a minimum or
maximum spanning tree, so the trees are not unique.

This chapter discusses algorithms that construct a minimum or maximum
spanning tree for a graph. It turns out that it is easy to find such spanning trees
because many greedy methods produce an optimal solution.

We will learn two algorithms that both construct the tree by choosing edges
ordered by weights. We will focus on finding a minimum spanning tree, but the
same algorithms can be used for finding a maximum spanning tree by processing
the edges in reverse order.

15.1 Kruskal’s algorithm

In Kruskal’s algorithm, the initial spanning tree is empty and doesn’t contain
any edges. Then the algorithm adds edges to the tree one at a time in increasing
order of their weights. At each step, the algorithm includes an edge in the tree if
it doesn’t create a cycle.

Kruskal’s algorithm maintains the components in the tree. Initially, each node
of the graph is in its own component, and each edge added to the tree joins two
components. Finally, all nodes will be in the same component, and a minimum
spanning tree has been found.

Example

Let’s consider how Kruskal’s algorithm processes the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

The first step in the algorithm is to sort the edges in increasing order of their
weights. The result is the following list:

134



edge weight
5–6 2
1–2 3
3–6 3
1–5 5
2–3 5
2–5 6
4–6 7
3–4 9

After this, the algorithm goes through the list and adds an edge to the tree if
it joins two separate components.

Initially, each node is in its own component:

1

2 3

4

5 6

The first edge to be added to the tree is edge 5–6 that joins components {5} and
{6} into component {5,6}:

1

2 3

4

5 6
2

After this, edges 1–2, 3–6 and 1–5 are added in a similar way:

1

2 3

4

5 6

3

5
2

3

After those steps, many components have been joined and there are two
components in the tree: {1,2,3,5,6} and {4}.

The next edge in the list is edge 2–3, but it will not be included in the tree
because nodes 2 and 3 are already in the same component. For the same reason,
edge 2–5 will not be added to the tree.

135



Finally, edge 4–6 will be included in the tree:

1

2 3

4

5 6

3

5
2

7

3

After this, the algorithm terminates because there is a path between any two
nodes and the graph is connected. The resulting graph is a minimum spanning
tree with weight 2+3+3+5+7= 20.

Why does this work?

It’s a good question why Kruskal’s algorithm works. Why does the greedy strategy
guarantee that we will find a minimum spanning tree?

Let’s see what happens if the lightest edge in the graph is not included in the
minimum spanning tree. For example, assume that a minimum spanning tree for
the above graph would not contain the edge between nodes 5 and 6 with weight 2.
We don’t know exactly how the new minimum spanning tree would look like, but
still it has to contain some edges. Assume that the tree would be as follows:

1

2 3

4

5 6

However, it’s not possible that the above tree would be a real minimum
spanning tree for the graph. The reason for this is that we can remove an edge
from it and replace it with the edge with weight 2. This produces a spanning tree
whose weight is smaller:

1

2 3

4

5 6
2

For this reason, it is always optimal to include the lightest edge in the mini-
mum spanning tree. Using a similar argument, we can show that we can also
add the second lightest edge to the tree, and so on. Thus, Kruskal’s algorithm
works correctly and always produces a minimum spanning tree.
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Implementation

Kruskal’s algorithm can be conveniently implemented using an edge list. The
first phase of the algorithm sorts the edges in O(m logm) time. After this, the
second phase of the algorithm builds the minimum spanning tree.

The second phase of the algorithm looks as follows:

for (...) {
if (!same(a,b)) union(a,b);

}

The loop goes through the edges in the list and always processes an edge a–b
where a and b are two nodes. The code uses two functions: the function same
determines if the nodes are in the same component, and the function unite joins
two components into a single component.

The problem is how to efficiently implement the functions same and unite.
One possibility is to maintain the graph in a usual way and implement the
function same as graph traversal. However, using this technique, the running
time of the function same would be O(n+m), and this would be slow because the
function will be called for each edge in the graph.

We will solve the problem using a union-find structure that implements both
the functions in O(logn) time. Thus, the time complexity of Kruskal’s algorithm
will be O(m logn) after sorting the edge list.

15.2 Union-find structure

The union-find structure maintains a collection of sets. The sets are disjoint,
so no element belongs to more than one set. Two O(logn) time operations are
supported. The first operation checks if two elements belong to the same set, and
the second operation joins two sets into a single set.

Structure

In the union-find structure, one element in each set is the representative of the
set. All other elements in the set point to the representative directly or through
other elements in the set. For example, in the following picture there are three
sets: {1,4,7}, {5} and {2,3,6,8}.

1

2

3

4 5

6

7

8

In this case the representatives of the sets are 4, 5 and 2. For each element, we
can find the representative for the corresponding set by following the path that
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begins at the element. For example, element 2 is the representative for the set
that contains element 6 because the path is 6→ 3→ 2. Thus, two elements belong
to the same set exactly when they point to the same representative.

Two sets can be combined by connecting the representative of one set to the
representative of another set. For example, sets {1,4,7} and {2,3,6,8} can be
combined as follows into set {1,2,3,4,6,7,8}:

1

2

3

4

6

7

8

In this case, element 2 becomes the representative for the whole set and the
old representative 4 points to it.

The efficiency of the operations depends on the way the sets are combined. It
turns out that we can follow a simple strategy and always connect the represen-
tative of the smaller set to the representative of the larger set (or, if the sets are
of the same size, both choices are fine). Using this strategy, the length of a path
from a element in a set to a representative is always O(logn) because each step
forward in the path doubles the size of the corresponding set.

Implementation

We can implement the union-find structure using arrays. In the following im-
plementation, array k contains for each element the next element in the path,
or the element itself if it is a representative, and array s indicates for each
representative the size of the corresponding set.

Initially, each element has an own set with size 1:

for (int i = 1; i <= n; i++) k[i] = i;
for (int i = 1; i <= n; i++) s[i] = 1;

The function find returns the representative for element x. The representa-
tive can be found by following the path that begins at element x.

int find(int x) {
while (x != k[x]) x = k[x];
return x;

}

The function same finds out whether elements a and b belong to the same set.
This can easily be done by using the function find.

bool same(int a, int b) {
return find(a) == find(b);

}
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The function union combines the sets that contain elements a and b into
a single set. The function first finds the representatives of the sets and then
connects the smaller set to the larger set.

void union(int a, int b) {
a = find(a);
b = find(b);
if (s[b] > s[a]) swap(a,b);
s[a] += s[b];
k[b] = a;

}

The time complexity of the function find is O(logn) assuming that the length
of the path is O(logn). Thus, the functions same and union also work in O(logn)
time. The function union ensures that the length of each path is O(logn) by
connecting the smaller set to the larger set.

15.3 Prim’s algorithm
Prim’s algorithm is an alternative method for finding a minimum spanning
tree. The algorithm first adds an arbitrary node to the tree, and then always
selects an edge whose weight is as small as possible and that adds a new node to
the tree. Finally, all nodes have been added to the tree and a minimum spanning
tree has been found.

Prim’s algorithm resembles Dijkstra’s algorithm. The difference is that Di-
jkstra’s algorithm always selects an edge that creates a shortest path from the
starting node to another node, but Prim’s algorithm simply selects the lightest
edge that adds a new node to the tree.

Example

Let’s consider how Prim’s algorithm works in the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

Initially, there are no edges between the nodes:

1

2 3

4

5 6
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We can select an arbitrary node as a starting node, so let’s select node 1. First,
an edge with weight 3 connects nodes 1 and 2:

1

2 3

4

5 6

3

After this, there are two edges with weight 5, so we can add either node 3 or
node 5 to the tree. Let’s add node 3 first:

1

2 3

4

5 6

3
5

The process continues until all nodes have been included in the tree:

1

2 3

4

5 6

3
5

2
7

3

Implementation

Like Dijkstra’s algorithm, Prim’s algorithm can be efficiently implemented using
a priority queue. In this case, the priority queue contains all nodes that can be
connected to the current component using a single edge, in increasing order of
the weights of the corresponding edges.

The time complexity of Prim’s algorithm is O(n+m logm) that equals the time
complexity of Dijkstra’s algorithm. In practice, Prim’s algorithm and Kruskal’s
algorithm are both efficient, and the choice of the algorithm is a matter of taste.
Still, most competitive programmers use Kruskal’s algorithm.
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Chapter 16

Directed graphs

In this chapter, we focus on two classes of directed graphs:

• Acyclic graph: There are no cycles in the graph, so there is no path from
any node to itself.

• Successor graph: The outdegree of each node is 1, so each node has a
unique successor.

It turns out that in both cases, we can design efficient algorithms that are based
on the special properties of the graphs.

16.1 Topological sorting

A topological sort is a ordering of the nodes of a directed graph where node a
is always before node b if there is a path from node a to node b. For example, for
the graph

1 2 3

4 5 6

a possible topological sort is [4,1,5,2,3,6]:

1 2 34 5 6

A topological sort always exists if the graph is acyclic. However, if the graph
contains a cycle, it is not possible to find a topological sort because no node in the
cycle can appear before other nodes in the cycle in the ordering. It turns out that
we can use depth-first search to both construct a topological sort or find out that
it is not possible because the graph contains a cycle.
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Algorithm

The idea is to go through the nodes in the graph and always begin a depth-first
search if the node has not been processed yet. During each search, the nodes
have three possible states:

• state 0: the node has not been processed (white)

• state 1: the node is under processing (light gray)

• state 2: the node has been processed (dark gray)

Initially, the state of each node is 0. When a search reaches a node for the
first time, the state of the node becomes 1. Finally, after all neighbors of a node
have been processed, the state of the node becomes 2.

If the graph contains a cycle, we will realize this during the search because
sooner or later we will arrive at a node whose state is 1. In this case, it is not
possible to construct a topological sort.

If the graph doesn’t contain a cycle, we can construct a topological sort by
adding each node to the end of a list when its state becomes 2. This list in reverse
order is a topological sort.

Example 1

In the example graph, the search first proceeds from node 1 to node 6:

1 2 3

4 5 6

Now node 6 has been processed, so it is added to the list. After this, the search
returns back:

1 2 3

4 5 6

At this point, the list contains values [6,3,2,1]. The next search begins at
node 4:

1 2 3

4 5 6
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Thus, the final list is [6,3,2,1,5,4]. We have processed all nodes, so a topologi-
cal sort has been found. The topological sort is the reverse list [4,5,1,2,3,6]:

1 2 34 5 6

Note that a topological sort is not unique, but there can be several topological
sorts for a graph.

Example 2

Let’s consider another example where we can’t construct a topological sort because
there is a cycle in the graph:

1 2 3

4 5 6

Now the search proceeds as follows:

1 2 3

4 5 6

The search reaches node 2 whose state is 1 which means the graph contains a
cycle. In this case, the cycle is 2→ 3→ 5→ 2.

16.2 Dynamic programming

If a directed graph is acyclic, dynamic programming can be applied to it. For
example, we can solve the following problems concerning paths from a starting
node to an ending node efficiently in O(n+m) time:

• how many different paths are there?

• what is the shortest/longest path?

• what is the minimum/maximum number of edges in a path?

• which nodes certainly appear in the path?

143



Counting the number of paths

As an example, let’s calculate the number of paths from a starting node to an
ending node in a directed, acyclic graph. For example, in the graph

1 2 3

4 5 6

there are 3 paths from node 4 to node 6:

• 4→ 1→ 2→ 3→ 6

• 4→ 5→ 2→ 3→ 6

• 4→ 5→ 3→ 6

The idea is to go through the nodes in a topological sort, and calculate for each
node the total number of paths that reach the node from different directions. In
this case, the topological sort is as follows:

1 2 34 5 6

The numbers of paths are as follows:

1 2 3

4 5 6

1 1 3

1 2 3

For example, there is an edge to node 2 from nodes 1 and 5. There is one path
from node 4 to both node 1 and 5, so there are two paths from node 4 to node 2.
Correspondingly, there is an edge to node 3 from nodes 2 and 5 that correspond
to two and one paths from node 4.

Extending Dijkstra’s algorithm

A by-product of Dijkstra’s algorithm is a directed, acyclic graph that shows for
each node in the original graph the possible ways to reach the node using a
shortest path from the starting node. Dynamic programming can be applied also
to this graph. For example, in the graph
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1 2

3 4

5

3

5 4

8

2
1

2

the following edges can belong to the shortest paths from node 1:

1 2

3 4

5

3

5 4

2
1

2

Now we can, for example, calculate the number of shortest paths from node 1
to node 5 using dynamic programming:

1 2

3 4

5

3

5 4

2
1

2

1 1

2 3

3

Representing problems as graphs

Actually, any dynamic programming problem can be represented as a directed,
acyclic graph. In such a graph, each node is a dynamic programming state, and
the edges indicate how the states depend on each other.

As an example, consider the problem where our task is to form a sum of money
x using coins {c1, c2, . . . , ck}. In this case, we can construct a graph where each
node corresponds to a sum of money, and the edges show how we can choose coins.
For example, for coins {1,3,4} and x = 6, the graph is as follows:

0 1 2 3 4 5 6

Using this representation, the shortest path from node 0 to node x corresponds
to a solution with minimum number of coins, and the total number of paths from
node 0 to node x equals the total number of solutions.
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16.3 Successor paths
For the rest of the chapter, we concentrate on successor graphs where the
outdegree of each node is 1, i.e., exactly one edge begins at the node. Thus, the
graph consists of one or more components, and each component contains one cycle
and some paths that lead to it.

Successor graphs are sometimes called functional graphs. The reason for
this is that any successor graph corresponds to a function f that defines the
edges in the graph. The parameter for the function is a node in the graph, and
the function returns the successor of the node.

For example, the function

x 1 2 3 4 5 6 7 8 9
f (x) 3 5 7 6 2 2 1 6 3

defines the following graph:

1 23

4

5

67

8

9

Since each node in a successor graph has a unique successor, we can define
a function f (x,k) that returns the node that we will reach if we begin at node x
and walk k steps forward. For example, in the above graph f (4,6)= 2 because by
walking 6 steps from node 4, we will reach node 2:

4 6 2 5 2 5 2

A straightforward way to calculate a value f (x,k) is to walk through the
path step by step which takes O(k) time. However, using preprocessing, we can
calculate any value f (x,k) in only O(logk) time.

The idea is to precalculate all values f (x,k) where k is a power of two and at
most u where u is the maximum number of steps we will ever walk. This can be
done efficiently because we can use the following recursion:

f (x,k)=
{

f (x) k = 1
f ( f (x,k/2),k/2) k > 1

Precalculating values f (x,k) takes O(n logu) time because we calculate O(logu)
values for each node. In the above graph, the first values are as follows:

x 1 2 3 4 5 6 7 8 9
f (x,1) 3 5 7 6 2 2 1 6 3
f (x,2) 7 2 1 2 5 5 3 2 7
f (x,4) 3 2 7 2 5 5 1 2 3
f (x,8) 7 2 1 2 5 5 3 2 7

· · ·
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After this, any value f (x,k) can be calculated by presenting the value k as a
sum of powers of two. For example, if we want to calculate the value f (x,11), we
first form the representation 11= 8+2+1. Using this,

f (x,11)= f ( f ( f (x,8),2),1).

For example, in the above graph

f (4,11)= f ( f ( f (4,8),2),1)= 5.

Such a representation always consists of O(logk) parts so calculating a value
f (x,k) takes O(logk) time.

16.4 Cycle detection
Interesting questions in a successor graph are which node is the first node in
the cycle if we begin our walk at node x, and what is the size of the cycle. For
example, in the graph

54

6

321

if we begin at node 1, the first node that belongs to the cycle is node 4, and the
cycle consists of three nodes (4, 5 and 6).

An easy way to detect a cycle is to walk in the graph beginning from node x
and keep track of all visited nodes. Once we will visit a node for the second time,
the first node in the cycle has been found. This method works in O(n) time and
also uses O(n) memory.

However, there are better algorithms for cycle detection. The time complexity
of those algorithms is still O(n), but they only use O(1) memory. This is an
important improvement if n is large. Next we will learn Floyd’s algorithm that
achieves these properties.

Floyd’s algorithm

Floyd’s algorithm walks forward in the graph using two pointers a and b. Both
pointers begin at the starting node of the graph. Then, on each turn, pointer a
walks one step forward, while pointer b walks two steps forward. The search
continues like that until the pointers will meet each other:

a = f(x);
b = f(f(x));
while (a != b) {

a = f(a);
b = f(f(b));

}
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At this point, pointer a has walked k steps, and pointer b has walked 2k steps
where the length of the cycle divides k. Thus, the first node that belongs to the
cycle can be found by moving pointer a to the starting node and advancing the
pointers step by step until they will meet again:

a = x;
while (a != b) {

a = f(a);
b = f(b);

}

Now a and b point to the first node in the cycle that can be reached from node
x. Finally, the length c of the cycle can be calculated as follows:

b = f(a);
c = 1;
while (a != b) {

b = f(b);
c++;

}
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Chapter 17

Strongly connectivity

In a directed graph, the directions of the edges restrict possible paths in the
graph, so even if the graph is connected, this doesn’t guarantee that there would
be a path between any two nodes. Thus, it is meaningful to define a new concept
for directed graphs that requires more than connectivity.

A graph is strongly connected if there is a path from any node to all other
nodes in the graph. For example, in the following picture, the left graph is
strongly connected, while the right graph is not.

1 2

3 4

1 2

3 4

The right graph is not strongly connected because, for example, there is no
path from node 2 to node 1.

The strongly connected components of a graph divide the graph into
strongly connected subgraphs that are as large as possible. The strongly con-
nected components form an acyclic component graph that represents the deep
structure of the original graph.

For example, for the graph

7

321

654

the strongly connected components are as follows:

7

321

654
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The corresponding component graph is as follows:

B

A

DC

The components are A = {1,2}, B = {3,6,7}, C = {4} and D = {5}.
A component graph is an acyclic, directed graph, so it is easier to process than

the original graph because it doesn’t contain cycles. Thus, as in Chapter 16, it
is possible to construct a topological sort for a component graph and also use
dynamic programming algorithms.

17.1 Kosaraju’s algorithm

Kosaraju’s algorithm is an efficient method for finding the strongly connected
components of a directed graph. It performs two depth-first searches: the first
search constructs a list of nodes according to the structure of the graph, and the
second search forms the strongly connected components.

Search 1

The first phase of the algorithm constructs a list of nodes in the order in which a
depth-first search processes them. The algorithm goes through the nodes, and
begins a depth-first search at each unprocessed node. Each node will be added to
the list after it has been processed.

In the example graph the nodes are processed in the following order:

7

321

654

1/8 2/7 9/14

4/5 3/6 11/12

10/13

The notation x/y means that processing the node started at moment x and
ended at moment y. When the nodes are sorted according to ending times, the
result is the following list:
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node ending time
4 5
5 6
2 7
1 8
6 12
7 13
3 14

In the second phase of the algorithm, the nodes will be processed in reverse
order: [3,7,6,1,2,5,4].

Search 2

The second phase of the algorithm forms the strongly connected components of the
graph. First, the algorithm reverses every edge in the graph. This ensures that
during the second search, we will always find a strongly connected component
without extra nodes.

The example graph becomes as follows after reversing the edges:

7

321

654

After this, the algorithm goes through the nodes in the order defined by the
first search. If a node doesn’t belong to a component, the algorithm creates a new
component and begins a depth-first search where all new nodes found during the
search are added to the new component.

In the example graph, the first component begins at node 3:

7

321

654

Note that since we reversed all edges in the graph, the component doesn’t
”leak” to other parts in the graph.
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The next nodes in the list are nodes 7 and 6, but they already belong to a
component. The next new component begins at node 1:

7

321

654

Finally, the algorithm processes nodes 5 and 5 that create the remaining
strongy connected components:

7

321

654

The time complexity of the algorithm is O(n+m) where n is the number of
nodes and m is the number of edges. The reason for this is that the algorithm
performs two depth-first searches and each search takes O(n+m) time.

17.2 2SAT problem
Strongly connectivity is also linked with the 2SAT problem. In this problem,
we are given a logical formula

(a1 ∨b1)∧ (a2 ∨b2)∧·· ·∧ (am ∨bm),

where each ai and bi is either a logical variable (x1, x2, . . . , xn) or a negation of
a logical variable (¬x1,¬x2, . . . ,¬xn). The symbols ”∧” and ”∨” denote logical
operators ”and” and ”or”. Our task is to assign each variable a value so that the
formula is true or state that it is not possible.

For example, the formula

L1 = (x2 ∨¬x1)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x3)∧ (¬x2 ∨¬x3)∧ (x1 ∨ x4)

is true when x1 and x2 are false and x3 and x4 are true. However, the formula

L2 = (x1 ∨ x2)∧ (x1 ∨¬x2)∧ (¬x1 ∨ x3)∧ (¬x1 ∨¬x3)

is always false. The reason for this is that we can’t choose a value for variable x1
without creating a contradiction. If x1 is false, both x2 and ¬x2 should hold which
is impossible, and if x1 is true, both x3 and ¬x3 should hold which is impossible
as well.

The 2SAT problem can be represented as a graph where the nodes correspond
to variables xi and negations ¬xi, and the edges determine the connections
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between the variables. Each pair (ai ∨ bi) generates two edges: ¬ai → bi and
¬bi → ai. This means that if ai doesn’t hold, bi must hold, and vice versa.

The graph for formula L1 is:

¬x3 x2

¬x4 x1

¬x1 x4

¬x2 x3

And the graph for formula L2 is:

x3 x2 ¬x2 ¬x3

¬x1

x1

The structure of the graph indicates whether the corresponding 2SAT problem
can be solved. If there is a variable xi such that both xi and ¬xi belong to the
same strongly connected component, then there are no solutions. In this case, the
graph contains a path from xi to ¬xi, and also a path from ¬xi to xi, so both xi
and ¬xi should hold which is not possible. However, if the graph doesn’t contain
such a variable, then there is always a solution.

In the graph of formula L1 no nodes xi and ¬xi belong to the same strongly
connected component, so there is a solution. In the graph of formula L2 all nodes
belong to the same strongly connected component, so there are no solutions.

If a solution exists, the values for the variables can be found by processing
the nodes of the component graph in a reverse topological sort order. At each
step, we process and remove a component that doesn’t contain edges that lead to
the remaining components. If the variables in the component don’t have values,
their values will be determined according to the component, and if they already
have values, they are not changed. The process continues until all variables have
been assigned a value.

The component graph for formula L1 is as follows:

A B C D

The components are A = {¬x4}, B = {x1, x2,¬x3}, C = {¬x1,¬x2, x3} and D = {x4}.
When constructing the solution, we first process component D where x4 becomes
true. After this, we process component C where x1 and x2 become false and
x3 becomes true. All variables have been assigned a value, so the remaining
components A and B don’t change the variables anymore.
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Note that this method works because the structure of the graph is special. If
there are paths from node xi to node x j and from node x j to node ¬x j, then node
xi never becomes true. The reason for this is that there is also a path from node
¬x j to node ¬xi, and both xi and x j become false.

A more difficult problem is the 3SAT problem where each part of the formula
is of the form (ai∨bi∨ci). No efficient algorithm for solving this problem is known,
but it is a NP-hard problem.
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Chapter 18

Tree queries

This chapter discusses techniques for efficiently performing queries for a rooted
tree. The queries are related to subtrees and paths in the tree. For example,
possible queries are:

• what is the kth ancestor of node x?

• what is the sum of values in the subtree of node x?

• what is the sum of values in a path between nodes a and b?

• what is the lowest common ancestor of nodes a and b?

18.1 Finding ancestors

The kth ancestor of node x in the tree is found when we ascend k steps in the tree
beginning at node x. Let f (x,k) denote the kth ancestor of node x. For example,
in the following tree, f (2,1)= 1 and f (8,2)= 4.

1

24 5

63 7

8

A straighforward way to calculate f (x,k) is to move k steps upwards in the
tree beginning from node x. However, the time complexity of this method is O(n)
because it is possible that the tree contains a chain of O(n) nodes.
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As in Chapter 16.3, any value of f (x,k) can be efficiently calculated in O(logk)
after preprocessing. The idea is to precalculate all values f (x,k) where k is a
power of two. For example, the values for the tree above are as follows:

x 1 2 3 4 5 6 7 8
f (x,1) 0 1 4 1 1 2 4 7
f (x,2) 0 0 1 0 0 1 1 4
f (x,4) 0 0 0 0 0 0 0 0

· · ·

The value 0 means that the kth ancestor of a node doesn’t exist.
The preprocessing takes O(n logn) time because each node can have at most

n ancestors. After this, any value f (x,k) can be calculated in O(logk) time by
representing the value k as a sum where each term is a power of two.

18.2 Subtrees and paths

A node array contains the nodes of a rooted tree in the order in which a depth-
first search from the root node visits them. For example, in the tree

1

2 3 4 5

6 7 8 9

a depth-first search proceeds as follows:

1

2 3 4 5

6 7 8 9

Hence, the corresponding node array is as follows:

1 2 6 3 4 7 8 9 5

1 2 3 4 5 6 7 8 9
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Subtree queries

Each subtree of a tree corresponds to a subarray in the node array, where the
first element is the root node. For example, the following subarray contains the
nodes in the subtree of node 4:

1 2 6 3 4 7 8 9 5

1 2 3 4 5 6 7 8 9

Using this fact, we can efficiently process queries that are related to subtrees of
the tree. As an example, consider a problem where each node is assigned a value,
and our task is to support the following queries:

• change the value of node x

• calculate the sum of values in the subtree of node x

Let us consider the following tree where blue numbers are values of nodes.
For example, the sum of values in the subtree of node 4 is 3+4+3+1= 11.

1

2 3 4 5

6 7 8 9

2

3 5 3 1

4 4 3 1

The idea is to construct a node array that contains three values for each node:
(1) identifier of the node, (2) size of the subtree, and (3) value of the node. For
example, the array for the above tree is as follows:

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

1 2 3 4 5 6 7 8 9

Using this array, we can calculate the sum of nodes in a subtree by first
reading the size of the subtree and then the values of the corresponding nodes.
For example, the values in the subtree of node 4 can be found as follows:

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

1 2 3 4 5 6 7 8 9
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The remaining step is to store the values of the nodes in a binary indexed tree
or segment tree. After this, we can both calculate the sum of values and change a
value in O(logn) time, so we can efficiently process the queries.

Path queries

Using a node array, we can also efficiently process paths between the root node
and any other node in the tree. Let us next consider a problem where our task is
to support the following queries:

• change the value of node x

• calculate the sum of values from the root to node x

For example, in the following tree, the sum of values from the root to node 8
is 4+5+3= 12.

1

2 3 4 5

6 7 8 9

4

5 3 5 2

3 5 3 1

To solve this problem, we can use a similar technique as we used for subtree
queries, but the values of the nodes are stored in a special way: if the value of a
node at index k increases by a, the value at index k increases by a and the value
at index k+ c decreases by a, where c is the size of the subtree.

For example, the following array corresponds to the above tree:

1 2 6 3 4 7 8 9 5 –

9 2 1 1 4 1 1 1 1 –

4 5 3 −5 2 5 −2 −2 −4 −4

1 2 3 4 5 6 7 8 9 10

For example, the value of node 3 is −5, because it is the next node after the
subtrees of nodes 2 and 6 and its own value is 3. So the value decreases by 5+3
and increases by 3. Note that the array contains an extra index 10 that only has
the opposite number of the value of the root node.

Using this array, the sum of values in a path from the root to node x equals
the sum of values in the array from the beginning to node x. For example, the
sum from the root to node 8 can be calculated as follows:
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1 2 6 3 4 7 8 9 5 –

9 2 1 1 4 1 1 1 1 –

4 5 3 −5 2 5 −2 −2 −4 −4

1 2 3 4 5 6 7 8 9 10

The sum is
4+5+3−5+2+5−2= 12,

that equals the sum 4+5+3= 12. This method works because the value of each
node is added to the sum when the depth-first search visits it for the first time,
and correspondingly, the value is removed from the sum when the subtree of the
node has been processed.

Once again, we can store the values of the nodes in a binary indexed tree or a
segment tree, so it is possible to both calculate the sum of values and change a
value efficiently in O(logn) time.

18.3 Lowest common ancestor

The lowest common ancestor of two nodes is a the lowest node in the tree
whose subtree contains both the nodes. A typical problem is to efficiently process
queries where the task is to find the lowest common ancestor of two nodes. For
example, in the tree

1

42 3

75 6

8

the lowest common ancestor of nodes 5 and 8 is node 2, and the lowest common
ancestor of nodes 3 and 4 is node 1.

Next we will discuss two efficient techniques for finding the lowest common
ancestor of two nodes.

Method 1

One way to solve the problem is use the fact that we can efficiently find the kth
ancestor of any node in the tree. Using this idea, we can first ensure that both

159



nodes are at the same level in the tree, and then find the smallest value of k
where the kth ancestor of both nodes is the same.

As an example, let’s find the lowest common ancestor of nodes 5 and 8 in the
following tree:

1

42 3

75 6

8

Node 5 is at level 3, while node 8 is at level 4. Thus, we first move one step
upwards from node 8 to node 6. After this, it turns out that the parent of both
node 5 and node 6 is node 2, so we have found the lowest common ancestor.

1

42 3

75 6

8

Using this method, we can find the lowest common ancestor of any two nodes
in O(logn) time after an O(n logn) time preprocessing, because both steps can be
done in O(logn) time.

Method 2

Another way to solve the problem is based on a node array. Again, the idea is to
traverse the nodes using a depth-first search:
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1

42 3

75 6

8

However, we add each node to the node array always when the depth-first
search visits the node, and not only at the first visit. Thus, a node that has k
children appears k+1 times in the node array, and there are a total of 2n−1
nodes in the array.

We store two values in the array: (1) identifier of the node, and (2) the level of
the node in the tree. The following array corresponds to the above tree:

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Using this array, we can find the lowest common ancestor of nodes a and b
by locating the node with lowest level between nodes a and b in the array. For
example, the lowest common ancestor of nodes 5 and 8 can be found as follows:

↑

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node 5 is at index 3, node 8 is at index 6, and the node with lowest level
between indices 3 . . .6 is node 2 at index 4 whose level is 2. Thus, the lowest
common ancestor of nodes 5 and 8 is node 2.

Using a segment tree, we can find the lowest common ancestor in O(logn)
time. Since the array is static, the time complexity O(1) is also possible, but this
is rarely needed. In both cases, preprocessing takes O(n logn) time.

Distances of nodes

Finally, let’s consider a problem where each query asks to find the distance
between two nodes in the tree, i.e., the length of the path between them. It turns
out that this problem reduces to finding the lowest common ancestor.
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First, we choose an arbitrary node for the root of the tree. After this, the
distance between nodes a and b is d(a)+ d(b)−2 · d(c), where c is the lowest
common ancestor, and d(s) is the distance from the root node to node s. For
example, in the tree

1

42 3

75 6

8

the lowest common ancestor of nodes 5 and 8 is node 2. A path from node 5 to
node 8 goes first upwards from node 5 to node 2, and then downwards from node
2 to node 8. The distances of the nodes from the root are d(5)= 3, d(8)= 4 and
d(2)= 2, so the distance between nodes 5 and 8 is 3+4−2 ·2= 3.
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Chapter 19

Paths and circuits

This chapter focuses on two types of paths in a graph:

• An Eulerian path is a path that goes through each edge exactly once.

• A Hamiltonian path is a path that visits each node exactly once.

While Eulerian and Hamiltonian paths look like similar concepts at first glance,
the computational problems related to them are very different. It turns out that
a simple rule based on node degrees determines if a graph contains an Eulerian
path, and there is also an efficient algorithm for finding the path. On the contrary,
finding a Hamiltonian path is a NP-hard problem and thus no efficient algorithm
is known for solving the problem.

19.1 Eulerian path
An Eulerian path is a path that goes exactly once through each edge in the
graph. For example, the graph

1 2

3

4 5

has an Eulerian path from node 2 to node 5:

1 2

3

4 5

1.

2.

3.

4.

5.

6.

An Eulerian circuit is an Eulerian path that begins and ends at the same node.
For example, the graph
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1 2

3

4 5

has an Eulerian circuit that starts and ends at node 1:

1 2

3

4 5

1.
2.

3.

4.

5.
6.

Existence

It turns out that the existence of Eulerian paths and circuits depends on the
degrees of the nodes in the graph. The degree of a node is the number of its
neighbours, i.e., the number of nodes that are connected with a direct edge.

An undirected graph has an Eulerian path if all the edges belong to the same
connected component and

• the degree of each node is even or

• the degree of exactly two nodes is odd, and the degree of all other nodes is
even.

In the first case, each Eulerian path is also an Eulerian circuit. In the second
case, the odd-degree nodes are the starting and ending nodes of an Eulerian path,
and it is not an Eulerian circuit.

For example, in the graph

1 2

3

4 5

the degree of nodes 1, 3 and 4 is 2, and the degree of nodes 2 and 5 is 3. Exactly
two nodes have an even degree, so there is an Eulerian path between nodes 2
and 5, but the graph doesn’t contain an Eulerian circuit.

In a directed graph, the situation is a bit more difficult. In this case we should
focus on indegree and outdegrees of the nodes in the graph. The indegree of
a node is the number of edges that end at the node, and correspondingly, the
outdegree is the number of edges that begin at the node.

A directed graph contains an Eulerian path if all the edges belong to the same
strongly connected component and
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• each node has the same indegree and outdegree or

• in one node, indegree is one larger than outdegree, in another node, outde-
gree is one larger than indegree, and all other nodes have the same indegree
and outdegree.

In the first case, each Eulerian path is also an Eulerian circuit, and in the
second case, the graph only contains an Eulerian path that begins at the node
whose outdegree is larger and ends at the node whose indegree is larger.

For example, in the graph

1 2

3

4 5

nodes 1, 3 and 4 have both indegree 1 and outdegree 1, node 2 has indegree 1
and outdegree 2, and node 5 has indegree 2 and outdegree 1. Hence, the graph
contains an Eulerian path from node 2 to node 5:

1 2

3

4 5

1.

2.
3.

4.

5.

6.

Hierholzer’s algorithm

Hierholzer’s algorithm constructs an Eulerian circuit in an undirected graph.
The algorithm assumes that all edges belong to the same connected component,
and the degree of each node is even. The algorithm can be implemented in
O(n+m) time.

First, the algorithm constructs a circuit that contains some (not necessarily
all) of the edges in the graph. After this, the algorithm extends the circuit step by
step by adding subcircuits to it. This continues until all edges have been added
and the Eulerian circuit is ready.

The algorithm extends the circuit by always choosing a node x that belongs to
the circuit but has some edges that are not included in the circuit. The algorith
constructs a new path from node x that only contains edges that are not in the
circuit. Since the degree of each node is even, sooner or later the path will return
to node x which creates a subcircuit.

If the graph contains two odd-degree nodes, Hierholzer’s algorithm can also
be used for constructing an Eulerian path by adding an extra edge between the
odd-degree nodes. After this, we can first construct an Eulerian circuit and then
remove the extra edge, which produces an Eulerian path in the original graph.
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Example

Let’s consider the following graph:

1

2 3 4

5 6 7

Assume that the algorithm first creates a circuit that begins at node 1. One
possible circuit is 1→ 2→ 3→ 1:

1

2 3 4

5 6 7

1.

2.
3.

After this, the algorithm adds a subcircuit 2→ 5→ 6→ 2:

1

2 3 4

5 6 7

1.

2.

3.

4.

5.
6.

Finally, the algorithm adds a subcircuit 6→ 3→ 4→ 7→ 6:

1

2 3 4

5 6 7

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
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Now all edges are included in the circuit, so we have successfully constructed an
Eulerian circuit.

19.2 Hamiltonian path
A Hamiltonian path is a path that visits each node in the graph exactly once.
For example, the graph

1 2

3

4 5

contains a Hamiltonian path from node 1 to node 3:

1 2

3

4 5

1.

2.

3.

4.

If a Hamiltonian path begins and ends at the same node, it is called a Hamil-
tonian circuit. The graph above also has an Hamiltonian circuit that begins
and ends at node 1:

1 2

3

4 5

1.
2.

3.
4.

5.

Existence

No efficient way is known to check if a graph contains a Hamiltonian path. Still,
in some special cases we can be certain that the graph contains a Hamiltonian
path.

A simple observation is that if the graph is complete, i.e., there is an edge
between all pairs of nodes, it also contains a Hamiltonian path. Also stronger
results have been achieved:

• Dirac’s theorem: If the degree of each node is at least n/2, the graph
contains a Hamiltonian path.

• Ore’s theorem: If the sum of degrees of each non-adjacent pair of nodes is
at least n, the graph contains a Hamiltonian path.
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A common feature in these theorems and other results is that they guarantee
that a Hamiltonian path exists if the graph has a lot of edges. This makes sense
because the more edges the graph has, the more possibilities we have to construct
a Hamiltonian graph.

Construction

Since there is no efficient way to check if a Hamiltonian path exists, it is clear that
there is also no method for constructing the path efficiently, because otherwise
we could just try to construct the path and see whether it exists.

A simple way to search for a Hamiltonian path is to use a backtracking
algorithm that goes through all possibilities how to construct the path. The time
complexity of such an algorithm is at least O(n!), because there are n! different
ways to form a path from n nodes.

A more efficient solution is based on dynamic programming (see Chapter
10.4). The idea is to define a function f (s, x), where s is a subset of nodes, and
x is one of the nodes in the subset. The function indicates whether there is a
Hamiltonian path that visits the nodes in s and ends at node x. It is possible to
implement this solution in O(2nn2) time.

19.3 De Bruijn sequence

A De Bruijn sequence is a string that contains every string of length n exactly
once as a substring, for a fixed alphabet that consists of k characters. The length
of such a string is kn +n−1 characters. For example, when n = 3 and k = 2, an
example of a De Bruijn sequence is

0001011100.

The substrings of this string are all combinations of three bits: 000, 001, 010,
011, 100, 101, 110 and 111.

It turns out that each De Bruijn sequence corresponds to an Eulerian circuit
in a graph. The idea is to construct the graph so that each node contains a
combination of n−1 characters and each edge adds one character to the string.
The following graph corresponds to the example case:

00 11

01

10

1 1

00

01
0 1
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An Eulerian path in this graph produces a string that contains all strings
of length n. The string contains the characters in the starting node, and all
character in the edges. The starting node contains n−1 characters and there are
kn characters in the edges, so the length of the string is kn +n−1.

19.4 Knight’s tour
A knight’s tour is a sequence of moves of a knight on an n× n chessboard
following the rules of chess where the knight visits each square exactly once. The
tour is closed if the knight finally returns to the starting square and otherwise
the tour is open.

For example, here’s a knight’s tour on a 5×5 board:

1 4 11 16 25

12 17 2 5 10

3 20 7 24 15

18 13 22 9 6

21 8 19 14 23

A knight’s tour corresponds to a Hamiltonian path in a graph whose nodes
represent the squares of the board, and two nodes are connected with an edge if
a knight can move between the squares according to the rules of chess.

A natural way to solve the problem is to use backtracking. The search can
be made more efficient by using heuristics that attempts to guide the knight so
that a complete tour will be found quickly.

Warnsdorff’s rule

Warnsdorff’s rule is a simple and good heuristic for finding a knight’s tour.
Using the rule, it is possible to efficiently find a tour even on a large board. The
idea is to always move the knight so that it ends up in a square where the number
of possible moves is as small as possible.

For example, in the following case there are five possible squares where the
knight can move:

1

2

a

b e

c d

In this case, Warnsdorff ’s rule moves the knight to square a, because after this
choice there is only a single possible move. The other choices would move the
knight to squares where there are three moves available.
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Chapter 20

Flows and cuts

In this chapter, we will focus on the following problems in a directed, weighted
graph where a starting node and a ending node is given:

• Finding a maximum flow: What is the maximum amount of flow we can
deliver from the starting node to the ending node?

• Finding a minimum cut: What is a minimum-weight set of edges that
separates the starting node and the ending node?

It turns out that these problems correspond to each other, and we can solve
them simultaneously using the same algorithm.

As an example, we will use the following graph where node 1 is the starting
node and node 6 is the ending node:

1

2 3

6

4 5

5
6

5

4
1

2

3 8

Maximum flow

A maximum flow is a flow from the starting node to the ending node whose
total amount is as large as possible. The weight of each edge is a capacity that
determines the maximum amount of flow that can go through the edge. In all
nodes, except for the starting node and the ending node, the amount of incoming
and outgoing flow must be the same.

A maximum flow for the example graph is as follows:

1

2 3

6

4 5

3/5
6/6

5/5

4/4
1/1

2/2

3/3 1/8
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The notation v/k means that amount of the flow through the edge is v and the
capacity of the edge is k. For each edge, it is required that v ≤ k. In this graph,
the size of a maximum flow is 7 because the outgoing flow from the starting node
is 3+4= 7, and the incoming flow to the ending node is 5+2= 7.

Note that in each intermediate node, the incoming flow and the outgoing flow
are equally large. For example, in node 2, the incoming flow is 3+3 = 6 from
nodes 1 and 4, and the outgoing flow is 6 to node 3.

Minimum cut

A minimum cut is a set of edges whose removal separates the starting node
from the ending node, and whose total weight is as small as possible. A cut
divides the graph into two components, one containing the starting node and the
other containing the ending node.

A minimum cut for the example graph is as follows:

1

2 3

6

4 5

5
6

5

4
1

2

3 8

In this cut, the first component contains nodes {1,2,4}, and the second com-
ponent contains nodes {3,5,6}. The weight of the cut is 7, because it consists of
edges 2→ 3 and 4→ 5, and the total weight of the edges is 6+1= 7.

It is not a coincidence that both the size of the maximum flow and the weight of
the minimum cut is 7 in the example graph. It turns out that a maximum flow
and a minimum cut are always of equal size, so the concepts are two sides of the
same coin.

Next we will discuss the Ford–Fulkerson algorithm that can be used for
finding a maximum flow and a minimum cut in a graph. The algorithm also helps
us to understand why they are equally large.

20.1 Ford–Fulkerson algorithm
The Ford–Fulkerson algorithm finds a maximum flow in a graph. The algo-
rithm begins with an empty flow, and at each step finds a path in the graph that
generates more flow. Finally, when the algorithm can’t extend the flow anymore,
it terminates and a maximum flow has been found.

The algorithm uses a special representation for the graph where each original
edge has a reverse edge in another direction. The weight of each edge indicates
how much more flow we could route through it. Initially, the weight of each
original edge equals the capacity of the edge, and the weight of each reverse edge
is zero.
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The new representation for the example graph is as follows:

1

2 3

6

4 5

5

0

6

0 5

0
4

0 1

0

2

0

3 0 80

Algoritmin toiminta

The Ford–Fulkerson algorithm finds at each step a path from the starting node
to the ending node where each edge has a positive weight. If there are more than
one possible paths, we can choose any of them.

In the example graph, we can choose, say, the following path:
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2 3
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4 5

5

0

6

0 5

0
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0 1

0

2

0

3 0 80

After choosing the path, the flow increases by x units where x is the smallest
weight of an edge in the path. In addition, the weight of each edge in the path
decreases by x, and the weight of each reverse edge increases by x.

In the above path, the weights of the edges are 5, 6, 8 and 2. The minimum
weight is 2, so the flow increases by 2 and the new graph is as follows:
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2 3

6

4 5

3

2

4

2 5

0
4

0 1

0

0

2

3 0 62

The idea is that increasing the flow decreases the amount of flow that can go
through the edges in the future. On the other hand, it is possible to adjust the
amount of the flow later using the reverse edges if it turns out that we should
route the flow in another way.

The algorithm increases the flow as long as there is a path from the starting
node to the ending node through positive edges. In the current example, our next
path can be as follows:
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The minimum weight in this path is 3, so the path increases the flow by 3,
and the total amount of the flow after processing the path is 5.

The new graph will be as follows:
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We still need two more steps before we have reached a maximum flow. For
example, we can choose the paths 1 → 2 → 3 → 6 and 1 → 4 → 5 → 3 → 6. Both
paths increase the flow by 1, and the final graph is as follows:
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It’s not possible to increase the flow anymore, because there is no path from
the starting node to the ending node with positive edge weights. Thus, the
algorithm terminates and the maximum flow is 7.

Finding paths

The Ford–Fulkerson algorithm doesn’t specify how the path that increases the
flow should be chosen. In any case, the algorithm will stop sooner or later and
produce a maximum flow. However, the efficiency of the algorithm depends on
the way the paths are chosen.

A simple way to find paths is to use depth-first search. Usually, this works
well, but the worst case is that each path only increases the flow by 1, and the
algorithm becomes slow. Fortunately, we can avoid this by using one of the
following algorithms:
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The Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson
algorithm where each path that increases the flow is chosen so that the number
of edges in the path is minimum. This can be done by using breadth-first search
instead of depth-first search. It turns out that this guarantees that flow increases
quickly, and the time complexity of the algorithm is O(m2n).

The scaling algorithm uses depth-first search to find paths where the
weight of each edge is at least a minimum value. Initially, the minimum value
is c, the sum of capacities of the edges that begin at the starting edge. If the
algorithm can’t find a path, the minimum value is divided by 2, and finally it will
be 1. The time complexity of the algorithm is O(m2 log c).

In practice, the scaling algorithm is easier to code because we can use depth-
first search to find paths. Both algorithms are efficient enough for problems that
typically appear in programming contests.

Minimum cut

It turns out that once the Ford–Fulkerson algorithm has found a maximum flow,
it has also produced a minimum cut. Let A be the set of nodes that can be reached
from the starting node using positive edges. In the example graph, A contains
nodes 1, 2 and 4:
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Now the minimum cut consists of the edges in the original graph that begin
at a node in A and end at a node outside A, and whose capacity is fully used in
the maximum flow. In the above graph, such edges are 2 → 3 and 4 → 5, that
correspond to the minimum cut 6+1= 7.

Why is the flow produced by the algorithm maximum, and why is the cut
minimum? The reason for this is that a graph never contains a flow whose size is
larger than the weight of any cut in the graph. Hence, always when a flow and a
cut are equally large, they are a maximum flow and a minimum cut.

Let’s consider any cut in the graph where the starting node belongs to set A,
the ending node belongs to set B and there are edges between the sets:

A B
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The weight of the cut is the sum of those edges that go from set A to set B.
This is an upper bound for the amount of flow in the graph, because the flow has
to proceed from set A to set B. Thus, a maximum flow is smaller than or equal to
any cut in the graph.

On the other hand, the Ford–Fulkerson algorithm produces a flow that is
exactly as large as a cut in the graph. Thus, the flow has to be a maximum flow,
and the cut has to be a minimum cut.

20.2 Parallel paths

As a first application for flows, we consider a problem where the task is to form
as many parallel paths as possible from the starting node of the graph to the
ending node. It is required that no edge appears in more than one path.

For example, in the graph

1

2 3

4 5

6

we can form two parallel paths from node 1 to node 6. This can be done by
choosing paths 1→ 2→ 4→ 3→ 6 and 1→ 4→ 5→ 6:

1

2 3

4 5

6

It turns out that the maximum number of parallel paths equals the maximum
flow in the graph when the weight of each edge is 1. After the maximum flow has
been constructed, the parallel paths can be found greedily by finding paths from
the starting node to the ending node.

Let’s then consider a variation for the problem where each node (except for the
starting and ending nodes) can appear in at most one path. After this restriction,
we can construct only one path in the above graph, because node 4 can’t appear
in more than one path:

1

2 3

4 5

6

176



A standard way to restrict the flow through a node is to divide the node into
two parts. All incoming edges are connected to the first part, and all outgoing
edges are connected to the second part. In addition, there is an edge from the
first part to the second part.

In the current example, the graph becomes as follows:

1

2 3

4 5

2 3

4 5

6

The maximum flow for the graph is as follows:

1

2 3

4 5

2 3

4 5

6

This means that it is possible to form exactly one path from the starting node
to the ending node when a node can’t appear in more than one path.

20.3 Maximum matching
A maximum matching is the largest possible set of pairs of nodes in a graph
such that there is an edge between each pair of nodes, and each node belongs to
at most one pair.

There is a polynomial algorithm for finding a maximum matching in a general
graph, but it is very complex. For this reason, we will restrict ourselves to the
case where the graph is bipartite. In this case we can easily find the maximum
matching using a maximum flow algorithm.

Finding a maximum matching

A bipartite graph can be always presented so that it consists of left-side and
right-side nodes, and all edges in the graph go between left and right sides. As
an example, consider the following graph:
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In this graph, the size of a maximum matching is 3:
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8

A maximum matching in a bipartite graph corresponds to a maximum flow
in an extended graph that contains a starting node, an ending node and all the
nodes of the original graph. There is an edge from the starting node to each
left-side node, and an edge from each right-side node to the ending node. The
capacity of each edge is 1.

In the example graph, the result is as follows:
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The size of a maximum flow in this graph equals the size of a maximum
matching in the original graph, because each path from the starting node to the
ending node adds one edge to the matching. In this graph, the maximum flow is
3, so the maximum matching is also 3.

Hall’s theorem

Hall’s theorem describes when a bipartite graph has a matching that contains
all nodes in one side of the graph. If both sides contain the same number of nodes,
Hall’s theorem tells us if it’s possible to construct a perfect matching where all
nodes are paired with each other.

Assume that we want to construct a matching that contains all left-side nodes.
Let X be a set of left-side nodes, and let f (X ) be the set of their neighbors.
According to Hall’s theorem, a such matching exists exactly when for each X , the
condition |X | ≤ | f (X )| holds.

Let’s study Hall’s theorem in the example graph. First, let X = {1,3} and
f (X )= {5,6,8}:
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The condition of Hall’s theorem holds, because |X | = 2 and | f (X )| = 3. Next,
let X = {2,4} and f (X )= {7}:

1
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4

5

6

7

8

In this case, |X | = 2 and | f (X )| = 1, so the condition of Hall’s theorem doesn’t
hold. This means that it’s not possible to form a perfect matching in the graph.
This result is not surprising, because we already knew that the maximum match-
ing in the graph is 3 and not 4.

If the condition of Hall’s theorem doesn’t hold, the set X provides an expla-
nation why we can’t form a matching. Since X contains more nodes than f (X ),
there is no pair for all nodes in X . For example, in the above graph, both nodes 2
and 4 should be connected to node 7 which is not possible.

Kőnig’s theorem

Kőnig’s theorem provides an efficient way to construct a minimum node
cover for a bipartite graph. This is a minimum set of nodes such that each edge
in the graph is connected to at least one node in the set.

In a general graph, finding a minimum node cover is a NP-hard problem.
However, in a bipartite graph, the size of a maximum matching and a minimum
node cover is always the same, according to Kőnig’s theorem. Thus, we can
efficiently find a minimum node cover using a maximum flow algorithm.

Let’s consider the following graph with a maximum matching of size 3:
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Using Kőnig’s theorem, we know that the size of a minimum node cover is also 3.
It can be constructed as follows:
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For each edge in the maximum matching, exactly one of its end nodes belongs to
the minimum node cover.

The set of all nodes that do not belong to a minimum node cover forms a
maximum independent set. This is the largest possible set of nodes where
there is no edge between any two nodes in the graph. Once again, finding a
maximum independent set in a general graph is a NP-hard problem, but in a
bipartite graph we can use Kőnig’s theorem to solve the problem efficiently. In
the example graph, the maximum independent set is as follows:
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20.4 Path covers

A path cover is a set of paths in a graph that is chosen so that each node in the
graph belongs to at least one path. It turns out that we can reduce the problem of
finding a minimum path cover in a directed, acyclic graph into a maximum flow
problem.

There are two variations for the problem: In a node-disjoint cover, every
node appears in exactly one path, and in a general cover, a node may appear in
more than one path. In both cases, the minimum path cover can be found using a
similar idea.

Node-disjoint cover

As an example, consider the following graph:

1 2 3 4

5 6 7

In this case, the minimum node-disjoint path cover consists of three paths.
For example, we can choose the following paths:

1 2 3 4

5 6 7
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Note that one of the paths only contains node 2, so it is possible that a path
doesn’t contain any edges.

Finding a path cover can be interpreted as finding a maximum matching in a
graph where each node in the original graph is represented by two nodes: a left
node and a right node. There is an edge from a left node to a right node, if there
is such an edge in the original graph. The idea is that the matching determines
which edges belong to paths in the original graph.

The matching in the example case is as follows:
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In this case, the maximum matching consists of four edges that corresponds
to edges 1→ 5, 3→ 4, 5→ 6 and 6→ 7 in the original graph. Thus, a minimum
node-disjoint path cover consists of paths that contain these edges.

The size of a minimum path cover is n− c where n is the number of nodes in
the graph, and c is the number of edges in the maximum matching. For example,
in the above graph the size of the minimum path cover is 7−4= 3.

General cover

In a general path cover, a node can belong to more than one path which may
decrease the number of paths needed. In the example graph, the minimum
general path cover consists of two paths as follows:

1 2 3 4

5 6 7

In this graph, a minimum general path cover contains 2 paths, while a
minimum node-disjoint path cover contains 3 paths. The difference is that in the
general path cover, node 6 appears in two paths.

A minimum general path cover can be found almost like a minimum node-
disjoint path cover. It suffices to extend the matching graph so that there is an
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edge a → b always when there is a path from node a to node b in the original
graph (possibly through several edges).

The matching graph for the example case looks as follows:
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Dilworth’s theorem

Dilworth’s theorem states that the size of a minimum general path cover in a
directed, acyclic graph equals the maximum size of an antichain, i.e., a set of
nodes such that there is no path from any node to another node.

For example, in the example graph, the minimum general path cover contains
two paths, so the largest antichain contains two nodes. We can construct such an
antichain by choosing nodes 3 and 7:

1 2 3 4

5 6 7

There is no path from node 3 to node 7, and no path from node 7 to node 3,
so nodes 3 and 7 form an antichain. On the other hand, if we choose any three
nodes in the graph, there is certainly a path from one node to another node.
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Part III

Advanced topics
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Chapter 21

Number theory

Number theory is a branch of mathematics that studies integers. Number
theory is a fascinating field, because many questions involving integers are very
difficult to solve even if they seem simple at first glance.

As an example, let’s consider the following equation:

x3 + y3 + z3 = 33

It’s easy to find three real numbers x, y and z that satisfy the equation. For
example, we can choose

x = 3,
y= 3p3,
z = 3p3.

However, nobody knows if there are any three integers x, y and z that would
satisfy the equation, but this is an open problem in number theory.

In this chapter, we will focus on basic concepts and algorithms in number the-
ory. We will start by discussing divisibility of numbers and important algorithms
for primality testing and factorization.

21.1 Primes and factors

A number a is a factor or divisor of a number b if b is divisible by a. If a is a
factor of b, we write a | b, and otherwise we write a - b. For example, the factors
of the number 24 are 1, 2, 3, 4, 6, 8, 12 and 24.

A number n > 1 is a prime if its only positive factors are 1 and n. For example,
the numbers 7, 19 and 41 are primes. The number 35 is not a prime because it
can be divided into factors 5 ·7 = 35. For each number n > 1, there is a unique
prime factorization

n = pα1
1 pα2

2 · · · pαk
k ,

where p1, p2, . . . , pk are primes and α1,α2, . . . ,αk are positive numbers. For exam-
ple, the prime factorization for the number 84 is

84= 22 ·31 ·71.
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The number of factors of a number n is

τ(n)=
k∏

i=1
(αi +1),

because for each prime pi, there are αi +1 ways to choose how many times it
appears in the factor. For example, the number of factors of the number 84 is
τ(84)= 3 ·2 ·2= 12. The factors are 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84.

The sum of factors of n is

σ(n)=
k∏

i=1
(1+ pi + . . .+ pαi

i )=
k∏

i=1

pai+1
i −1

pi −1
,

where the latter form is based on the geometric sum formula. For example, the
sum of factors of the number 84 is

σ(84)= 23 −1
2−1

· 32 −1
3−1

· 72 −1
7−1

= 7 ·4 ·8= 224.

The product of factors of n is

µ(n)= nτ(n)/2,

because we can form τ(n)/2 pairs from the factors, each with product n. For
example, the factors of the number 84 produce the pairs 1 ·84, 2 ·42, 3 ·28, etc.,
and the product of the factors is µ(84)= 846 = 351298031616.

A number n is perfect if n =σ(n)−n, i.e., the number equals the sum of its
divisors between 1 . . .n−1. For example, the number 28 is perfect because it
equals the sum 1+2+4+7+14.

Number of primes

It is easy to show that there is an infinite number of primes. If the number would
be finite, we could construct a set P = {p1, p2, . . . , pn} that contains all the primes.
For example, p1 = 2, p2 = 3, p3 = 5, and so on. However, using this set, we could
form a new prime

p1 p2 · · · pn +1

that is larger than all elements in P. This is a contradiction, and the number of
the primes has to be infinite.

Density of primes

The density of primes means how often there are primes among the numbers. Let
π(n) denote the number of primes between 1 . . .n. For example, π(10)= 4 because
there are 4 primes between 1 . . .10: 2, 3, 5 and 7.

It’s possible to show that
π(n)≈ n

lnn
,

which means that primes appear quite often. For example, the number of primes
between 1 . . .106 is π(106)= 78498, and 106/ ln106 ≈ 72382.
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Conjectures

There are many conjectures involving primes. Most people think that the con-
jectures are true, but nobody has been able to prove them. For example, the
following conjectures are famous:

• Goldbach’s conjecture: Each even integer n > 2 can be represented as a
sum n = a+b so that both a and b are primes.

• twin prime: There is an infinite number of pairs of the form {p, p+2},
where both p and p+2 are primes.

• Legendre’s conjecture: There is always a prime between numbers n2

and (n+1)2, where n is any positive integer.

Basic algorithms

If a number n is not prime, it can be represented as a product a ·b, where a ≤p
n

or b ≤p
n, so it certainly has a factor between 2 . . .

p
n. Using this observation, we

can both test if a number is prime and find the prime factorization of a number
in O(

p
n) time.

The following function prime checks if the given number n is prime. The
function tries to divide the number by all numbers between 2 . . .

p
n, and if none

of them divides n, then n is prime.

bool prime(int n) {
if (n < 2) return false;
for (int x = 2; x*x <= n; x++) {

if (n%x == 0) return false;
}
return true;

}

The following function factors constructs a vector that contains the prime
factorization of n. The function divides n by its prime factors, and adds them
to the vector. The process ends when the remaining number n has no factors
between 2 . . .

p
n. If n > 1, it is prime and the last factor.

vector<int> factors(int n) {
vector<int> f;
for (int x = 2; x*x <= n; x++) {

while (n%x == 0) {
f.push_back(x);
n /= x;

}
}
if (n > 1) f.push_back(n);
return f;

}
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Note that each prime factor appears in the vector as many times as it divides
the number. For example, 24= 23 ·3, so the result of the function is [2,2,2,3].

Sieve of Eratosthenes

The sieve of Eratosthenes is a preprocessing algorithm that builds an array
using which we can efficiently check if a given number between 2 . . .n is prime
and find one prime factor of the number.

The algorithm builds an array a where indices 2,3, . . . ,n are used. The value
a[k]= 0 means that k is prime, and the value a[k] 6= 0 means that k is not a prime
but one of its prime factors is a[k].

The algorithm iterates through the numbers 2 . . .n one by one. Always when a
new prime x is found, the algorithm records that the multiples of x (2x,3x,4x, . . .)
are not primes because the number x divides them.

For example, if n = 20, the array becomes:

0 0 2 0 3 0 2 3 5 0 3 0 7 5 2 0 3 0 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The following code implements the sieve of Eratosthenes. The code assumes
that each element in a is initially zero.

for (int x = 2; x <= n; x++) {
if (a[x]) continue;
for (int u = 2*x; u <= n; u += x) {

a[u] = x;
}

}

The inner loop of the algorithm will be executed n/x times for any x. Thus, an
upper bound for the running time of the algorithm is the harmonic sum

n∑
x=2

n/x = n/2+n/3+n/4+·· ·+n/n =O(n logn).

In fact, the algorithm is even more efficient because the inner loop will be
executed only if the number x is prime. It can be shown that the time complexity
of the algorithm is only O(n loglogn) that is very near to O(n).

Euclid’s algorithm

The greatest common divisor of numbers a and b, gcd(a,b), is the greatest
number that divides both a and b, and the least common multiple of a and b,
lcm(a,b), is the smallest number that is divisible by both a and b. For example,
gcd(24,36)= 12 and lcm(24,36)= 72.

The greatest common divisor and the least common multiple are connected as
follows:

lcm(a,b)= ab
gcd(a,b)
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Euclid’s algorithm provides an efficient way to find the greatest common
divisor of two numbers. The algorithm is based on the formula

gcd(a,b)=
{

a b = 0
gcd(b,a mod b) b 6= 0

For example,

gcd(24,36)= gcd(36,24)= gcd(24,12)= gcd(12,0)= 12.

The time complexity of Euclid’s algorithm is O(logn) where n = min(a,b). The
worst case is when a and b are successive Fibonacci numbers. In this case, the
algorithm goes through all smaller Fibonacci numbers. For example,

gcd(13,8)= gcd(8,5)= gcd(5,3)= gcd(3,2)= gcd(2,1)= gcd(1,0)= 1.

Euler’s totient function

Numbers a and b are coprime if gcd(a,b) = 1. Euler’s totient function ϕ(n)
returns the number of coprime numbers to n between 1 . . .n. For example, ϕ(12)=
4, because the numbers 1, 5, 7 and 11 are coprime to the number 12.

The value of ϕ(n) can be calculated using the prime factorization of n by the
formula

ϕ(n)=
k∏

i=1
pαi−1

i (pi −1).

For example, ϕ(12)= 21 · (2−1) ·30 · (3−1)= 4. Note that ϕ(n)= n−1 if n is prime.

21.2 Modular arithmetic
In modular arithmetic, the set of available numbers is restricted so that only
numbers 0,1,2, . . . ,m−1 can be used where m is a constant. Each number x is
represented by the number x mod m: the remainder after dividing x by m. For
example, if m = 17, then 75 is represented by 75 mod 17= 7.

Often we can take the remainder before doing a calculation. In particular, the
following formulas can be used:

(x+ y) mod m = (x mod m+ y mod m) mod m
(x− y) mod m = (x mod m− y mod m) mod m
(x · y) mod m = (x mod m · y mod m) mod m

(xk) mod m = (x mod m)k mod m

Modular exponentiation

Often there is need to efficiently calculate the remainder of xn. This can be done
in O(logn) time using the following recursion:

xn =


1 n = 0
xn/2 · xn/2 n is even
xn−1 · x n is odd
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It’s important that in the case of an even n, the number xn/2 is calculated
only once. This guarantees that the time complexity of the algorithm is O(logn)
because n is always halved when it is even.

The following function calculates the number xn mod m:

int modpow(int x, int n, int m) {
if (n == 0) return 1%m;
int u = modpow(x,n/2,m);
u = (u*u)%m;
if (n%2 == 1) u = (u*x)%m;
return u;

}

Fermat’s theorem and Euler’s theorem

Fermat’s theorem states that

xm−1 mod m = 1,

when m is prime and x and m are coprime. This also yields

xk mod m = xk mod (m−1) mod m.

More generally, Euler’s theorem states that

xϕ(m) mod m = 1,

when x and m are coprime. Fermat’s theorem follows from Euler’s theorem,
because if m is a prime, then ϕ(m)= m−1.

Modular inverse

The inverse of x modulo m is a number x−1 such that

xx−1 mod m = 1.

For example, if x = 6 and m = 17, then x−1 = 3, because 6 ·3 mod 17= 1.
Using modular inverses, we can divide numbers modulo m, because division

by x corresponds to multiplication by x−1. For example, to evaluate the value
of 36/6 mod 17, we can use the formula 2 ·3 mod 17, because 36 mod 17= 2 and
6−1 mod 17= 3.

However, a modular inverse doesn’t always exist. For example, if x = 2 and
m = 4, the equation

xx−1 mod m = 1.

can’t be solved, because all multiples of the number 2 are even, and the remainder
can never be 1 when m = 4. It turns out that the number x−1 mod m exists exactly
when x and m are coprime.
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If a modular inverse exists, it can be calculated using the formula

x−1 = xϕ(m)−1.

If m is prime, the formula becomes

x−1 = xm−2.

For example, if x = 6 and m = 17, then

x−1 = 617−2 mod 17= 3.

Using this formula, we can calculate the modular inverse efficiently using the
modular exponentation algorithm.

The above formula can be derived using Euler’s theorem. First, the modular
inverse should satisfy the following equation:

xx−1 mod m = 1.

On the other hand, according to Euler’s theorem,

xϕ(m) mod m = xxϕ(m)−1 mod m = 1,

so the numbers x−1 and xϕ(m)−1 are equal.

Computer arithmetic

In a computers, unsigned integers are represented modulo 2k where k is the
number of bits. A usual consequence of this is that a number wraps around if it
becomes too large.

For example, in C++, numbers of type unsigned int are represented mod-
ulo 232. The following code defines an unsigned int variable whose value is
123456789. After this, the value will be multiplied by itself, and the result is
1234567892 mod 232 = 2537071545.

unsigned int x = 123456789;
cout << x*x << "\n"; // 2537071545

21.3 Solving equations

A Diophantine equation is of the form

ax+by= c,

where a, b and c are constants, and our tasks is to solve variables x and y. Each
number in the equation has to be an integer. For example, one solution for the
equation 5x+2y= 11 is x = 3 and y=−2.
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We can efficiently solve a Diophantine equation by using Euclid’s algorithm.
It turns out that we can extend Euclid’s algorithm so that it will find numbers x
and y that satisfy the following equation:

ax+by= syt(a,b)

A Diophantine equation can be solved if c is divisible by gcd(a,b), and other-
wise it can’t be solved.

Extended Euclid’s algorithm

As an example, let’s find numbers x and y that satisfy the following equation:

39x+15y= 12

The equation can be solved, because syt(39,15) = 3 and 3 | 12. When Euclid’s
algorithm calculates the greatest common divisor of 39 and 15, it produces the
following sequence of function calls:

gcd(39,15)= gcd(15,9)= gcd(9,6)= gcd(6,3)= gcd(3,0)= 3

This corresponds to the following equations:

39−2 ·15 = 9
15−1 ·9 = 6
9−1 ·6 = 3

Using these equations, we can derive

39 ·2+15 · (−5)= 3

and by multiplying this by 4, the result is

39 ·8+15 · (−20)= 12,

so a solution for the original equation is x = 8 and y=−20.
A solution for a Diophantine equation is not unique, but we can form an

infinite number of solutions if we know one solution. If the pair (x, y) is a solution,
then also the pair

(x+ kb
gcd(a,b)

, y− ka
gcd(a,b)

)

is a solution where k is any integer.

Chinese remainder theorem

The Chinese remainder theorem solves a group of equations of the form

x = a1 mod m1
x = a2 mod m2
· · ·
x = an mod mn
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where all pairs of m1,m2, . . . ,mn are coprime.
Let x−1

m be the inverse of x modulo m, and

Xk =
m1m2 · · ·mn

mk
.

Using this notation, a solution for the equations is

x = a1X1X1
−1
m1

+a2X2X2
−1
m2

+·· ·+anXnXn
−1
mn

.

In this solution, it holds for each number k = 1,2, . . . ,n that

ak Xk Xk
−1
mk

mod mk = ak,

because
Xk Xk

−1
mk

mod mk = 1.

Since all other terms in the sum are divisible by mk, they have no effect on the
remainder, and the remainder by mk for the whole sum is ak.

For example, a solution for

x = 3 mod 5
x = 4 mod 7
x = 2 mod 3

is
3 ·21 ·1+4 ·15 ·1+2 ·35 ·2= 263.

Once we have found a solution x, we can create an infinite number of other
solutions, because all numbers of the form

x+m1m2 · · ·mn

are solutions.

21.4 Other results

Lagrange’s theorem

Lagrange’s theorem states that every positive integer can be represented as a
sum of four squares, i.e., a2 +b2 + c2 +d2. For example, the number 123 can be
represented as the sum 82 +52 +52 +32.

Zeckendorf’s theorem

Zeckendorf’s theorem states that every positive integer has a unique repre-
sentation as a sum of Fibonacci numbers such that no two numbers are the same
of successive Fibonacci numbers. For example, the number 74 can be represented
as the sum 55+13+5+1.
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Pythagorean triples

A Pythagorean triple is a triple (a,b, c) that satisfies the Pythagorean theorem
a2+b2 = c2, which means that there is a right triangle with side lengths a, b and
c. For example, (3,4,5) is a Pythagorean triple.

If (a,b, c) is a Pythagorean triple, all triples of the form (ka,kb,kc) are also
Pythagorean triples where k > 1. A Pythagorean triple is primitive if a, b and
c are coprime, and all Pythagorean triples can be constructed from primitive
triples using a multiplier k.

Euclid’s formula can be used to produce all primitive Pythagorean triples.
Each such triple is of the form

(n2 −m2,2nm,n2 +m2),

where 0< m < n, n and m are coprime and at least one of the numbers n and m
is even. For example, when m = 1 and n = 2, the formula produces the smallest
Pythagorean triple

(22 −12,2 ·2 ·1,22 +12)= (3,4,5).

Wilson’s theorem

Wilson’s theorem states that a number n is prime exactly when

(n−1)! mod n = n−1.

For example, the number 11 is prime, because

10! mod 11= 10,

and the number 12 is not prime, because

11! mod 12= 0 6= 11.

Hence, Wilson’s theorem tells us whether a number is prime. However, in
practice, the formula can’t be used for large values of n, because it’s difficult to
calculate the number (n−1)! if n is large.
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Chapter 22

Combinatorics

Combinatorics studies methods for counting combinations of objects. Usually,
the goal is to find a way to count the combinations efficiently without generating
each combination separately.

As an example, let’s consider a problem where our task is to calculate the
number of representations for an integer n as a sum of positive integers. For
example, there are 8 representations for the number 4:

• 1+1+1+1

• 1+1+2

• 1+2+1

• 2+1+1

• 2+2

• 3+1

• 1+3

• 4

A combinatorial problem can often be solved using a recursive function. In
this case, we can define a function f (n) that counts the number of representations
for n. For example, f (4)= 8 according to the above example. The function can be
recursively calculated as follows:

f (n)=
{

1 n = 1
f (1)+ f (2)+ . . .+ f (n−1)+1 n > 1

The base case is f (1)= 1, because there is only one way to represent the number
1. Otherwise, we go through all possibilities for the last number in the sum. For
example, in when n = 4, the sum can end with +1, +2 or +3. In addition, we also
count the representation that only contains n.

The first values for the function are:

f (1) = 1
f (2) = 2
f (3) = 4
f (4) = 8
f (5) = 16

It turns out that the function also has a closed-form formula

f (n)= 2n−1,
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which is based on the fact that there are n−1 possible positions for +-signs in the
sum, and we can choose any subset of them.

22.1 Binomial coefficients

A binomial coefficient
(n

k
)

is the number of ways we can choose a subset of
k elements from a set of n elements. For example,

(5
3

) = 10, because the set
{1,2,3,4,5} has 10 subsets of 3 elements:

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}

Formula 1

Binomial coefficients can be recursively calculated as follows:(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
The idea is to consider a fixed element x in the set. If x is included in the

subset, the remaining task is to choose k−1 elements from n−1 elements, and
otherwise the remaining task is to choose k elements from n−1 elements.

The base cases for the recursion are as follows:(
n
0

)
=

(
n
n

)
= 1

The reason for this is that there is always one way to construct an empty
subset, or a subset that contains all the elements.

Formula 2

Another way to calculate binomial coefficients is as follows:(
n
k

)
= n!

k!(n−k)!
.

There are n! permutations for n elements. We go through all permutations
and in each case select the first k elements of the permutation to the subset.
Since the order of the elements in the subset and outside the subset doesn’t
matter, the result is divided by k! and (n−k)!

Properties

For binomial coefficients, (
n
k

)
=

(
n

n−k

)
,
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because we can either select k elements to the subset, or select n− k elements
that will be outside the subset.

The sum of binomial coefficients is(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
n

)
= 2n.

The reason for the name ”binomial coefficient” is that

(a+b)n =
(
n
0

)
anb0 +

(
n
1

)
an−1b1 + . . .+

(
n

n−1

)
a1bn−1 +

(
n
n

)
a0bn.

Binomial coefficients also appear in Pascal’s triangle whose border consists
of 1’s, and each value is the sum of two above values:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . . . . . . . . . . . . . .

Boxes and balls

”Boxes and models” is a useful model, where we count the ways to place k balls in
n boxes. Let’s consider three cases:

Case 1: Each box can contain at most one ball. For example, when n = 5 and
k = 2, there are 10 solutions:

In this case, the answer is directly the binomial coefficient
(n

k
)
.

Case 2: A box can contain multiple balls. For example, when n = 5 and k = 2,
there are 15 solutions:
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This process can be represented as a string that consists of symbols ”o” and
”→”. Initially, we are standing at the leftmost box. The symbol ”o” means we place
a ball in the current box, and the symbol ”→” means that we move to the next
box right.

Using this notation, each solution is a string that has k times the symbol ”o”
and n−1 times the symbol ”→”. For example, the upper-right solution corresponds
to the string ”→ → o → o →”. Thus, the number of solutions is

(k+n−1
k

)
.

Case 3: Each box may contain at most one ball, and in addition, no two
adjacent boxes may both contain a ball. For example, when n = 5 and k = 2, there
are 6 solutions:

In this case, we can think that k balls are initially placed in boxes. and
between each such box there is an empty box. The remaining task is to choose
the positions for n−k− (k−1)= n−2k+1 empty boxes. There are k+1 positions,
so as in case 2, the number of solutions is

(n−2k+1+k+1−1
n−2k+1

)= ( n−k+1
n−2k+1

)
.

Multinomial coefficient

A generalization for a binomial coefficient is a multinomial coefficient(
n

k1,k2, . . . ,km

)
= n!

k1!k2! · · ·km!
,

where k1 +k2 +·· ·+km = n. A multinomial coefficient i the number of ways
we can divide n elements into subsets whose sizes are k1,k2, . . . ,km. If m = 2, the
formula corresponds to the binomial coefficient formula.

22.2 Catalan numbers

A Catalan number Cn is the number of valid parenthesis expressions that
consist of n left parentheses and n right parentheses.

For example, C3 = 5, because using three left parentheses and three right
parentheses, we can construct the following parenthesis expressions:

• ()()()
• (())()
• ()(())
• ((()))
• (()())
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Parenthesis expressions

What is exactly a valid parenthesis expression? The following rules precisely
define all valid parenthesis expressions:

• The expression () is valid.

• If a expression A is valid, then also the expression (A) is valid.

• If expressions A and B are valid, then also the expression AB is valid.

Another way to characterize valid paranthesis expressions is that if we choose
any prefix of the expression, it has to contain at least as many left parentheses as
right parentheses. In addition, the complete expression has to contain an equal
number of left and right parentheses.

Formula 1

Catalan numbers can be calculated using the formula

Cn =
n−1∑
i=0

CiCn−i−1.

The sum goes through the ways to divide the expression into two parts such
that both parts are valid expressions and the first part is as short as possible but
not empty. For any i, the first part contains i+1 pairs of parentheses, and the
number of expressions is the product of the following values:

• Ci: number of ways to construct an expression using the parentheses in
the first part, not counting the outermost parentheses

• Cn−i−1: number of ways to construct an expression using the parentheses
in the second part

In addition, the base case is C0 = 1, because we can construct an empty parenthe-
sis expression using zero pairs of parentheses.

Formula 2

Catalan numbers can also be calculated using binomial coefficients:

Cn = 1
n+1

(
2n
n

)

The formula can be explained as follows:
There are a total of

(2n
n

)
ways to construct a (not necessarily valid) parenthesis

expression that contains n left parentheses and n right parentheses. Let’s
calculate the number of such expressions that are not valid.

If a parenthesis expression is not valid, it has to contain a prefix where
the number of right parentheses exceeds the number of left parentheses. The
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idea is to reverse each parenthesis that belongs to such a prefix. For example,
the expression ())()( contains a prefix ()), and after reversing the prefix, the
expression becomes )((()(.

The resulting expression consists of n+1 left parentheses and n−1 right
parentheses. The number of such expressions is

( 2n
n+1

)
that equals the number

of non-valid parenthesis expressions. Thus the number of valid parenthesis
expressions can be calculated using the formula(

2n
n

)
−

(
2n

n+1

)
=

(
2n
n

)
− n

n+1

(
2n
n

)
= 1

n+1

(
2n
n

)
.

Counting trees

Catalan numbers are also related to rooted trees:

• there are Cn binary trees of n nodes

• there are Cn−1 rooted trees of n nodes

For example, for C3 = 5, the binary trees are

and the rooted trees are

22.3 Inclusion-exclusion
Inclusion-exclusion is a technique that can be used for counting the size of a
union of sets when the sizes of the intersections are known, and vice versa. A
simple example of the technique is the formula

|A∪B| = |A|+ |B|− |A∩B|,
where A and B are sets and |X | is the size of a set X . The formula can be
illustrated as follows:

A BA∩B
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In the above example, our goal is to calculate the size of the union A∪B that
corresponds to the area of the region that is inside at least one circle. The picture
shows that we can calculate the area of A∪B by first summing the areas of A
and B, and then subtracting the area of A∩B.

The same idea can be applied, when the number of sets is larger. When there
are three sets, the formula becomes

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

and the corresponding picture is

A B

C

A∩B

A∩C B∩C
A∩B∩C

In the general case, the size of the union X1∪ X2∪·· ·∪ Xn can be calculated
by going through all ways to construct an intersection for a collection of sets
X1, X2, . . . , Xn. If the intersection contains an odd number of sets, its size will be
added to the answer, and otherwise subtracted from the answer.

Note that similar formulas also work when counting the size of an intersection
from the sizes of unions. For example,

|A∩B| = |A|+ |B|− |A∪B|

and

|A∩B∩C| = |A|+ |B|+ |C|− |A∪B|− |A∪C|− |B∪C|+ |A∪B∪C|.

Derangements

As an example, let’s count the number of derangements of numbers {1,2, . . . ,n},
i.e., permutations where no element remains in its original place. For example,
when n = 3, there are two possible derangements: (2,3,1) ja (3,1,2).

One approach for the problem is to use inclusion-exclusion. Let Xk be the set
of permutations that contain the number k at index k. For example, when n = 3,
the sets are as follows:

X1 = {(1,2,3), (1,3,2)}
X2 = {(1,2,3), (3,2,1)}
X3 = {(1,2,3), (2,1,3)}

Using these sets the number of derangements is

n!−|X1 ∪ X2 ∪·· ·∪ Xn|,

201



so it suffices to calculate the size of the union. Using inclusion-exclusion, this
reduces to calculating sizes of intersections which can be done efficiently. For
example, when n = 3, the size of |X1 ∪ X2 ∪ X3| is

|X1|+ |X2|+ |X3|− |X1 ∩ X2|− |X1 ∩ X3|− |X2 ∩ X3|+ |X1 ∩ X2 ∩ X3|
= 2+2+2−1−1−1+1
= 4,

so the number of solutions is 3!−4= 2.
It turns out that there is also another way for solving the problem without

inclusion-exclusion. Let f (n) denote the number of derangements for {1,2, . . . ,n}.
We can use the following recursive formula:

f (n)=


0 n = 1
1 n = 2
(n−1)( f (n−2)+ f (n−1)) n > 2

The formula can be derived by going through the possibilities how the number
1 changes in the derangement. There are n−1 ways to choose a number x that
will replace the number 1. In each such choice, there are two options:

Option 1: We also replace the number x by the number 1. After this, the
remaining task is to construct a derangement for n−2 numbers.

Option 2: We replace the number x by some other number than 1. Now we
should construct a derangement for n−1 numbers, because we can’t replace the
number x with number 1, and all other numbers should be changed.

22.4 Burnside’s lemma

Burnside’s lemma counts the number of combinations so that for each group of
symmetric combinations, only one representative is counted. Burnside’s lemma
states that the number of combinations is

n∑
k=1

c(k)
n

,

where there are n ways to change the position of a combination, and there are
c(k) combinations that remain unchanged when the kth way is applied.

As an example, let’s calculate the number of necklaces of n pearls, where the
color of each pearl is one of 1,2, . . . ,m. Two necklaces are symmetric if they are
similar after rotating them. For example, the necklace

has the following symmetric necklaces:
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There are n ways to change the position of a necklace, because we can rotate it
0,1, . . . ,n−1 steps clockwise. If the number of steps is 0, all mn necklaces remain
the same, and if the number of steps is 1, only the m necklaces where each pearl
has the same color remain the same.

More generally, when the number of steps is k, a total of

mgcd(k,n),

necklaces remain the same, where gcd(k,n) is the greatest common divisor of k
and n. The reason for this is that sequences of pearls of size syt(k,n) will replace
each other. Thus, according to Burnside’s lemma, the number of necklaces is

n−1∑
i=0

msyt(i,n)

n
.

For example, the number of necklaces of length 4 with 3 colors is

34 +3+32 +3
4

= 24.

22.5 Cayley’s formula

Cayley’s formula states that there are nn−2 labeled trees that contain n nodes.
The nodes are labeled 1,2, . . . ,n, and two trees are different if either their struc-
ture or their labeling is different.

For example, when n = 4, the number of labeled trees is 44−2 = 16:

1

2 3 4

2

1 3 4

3

1 2 4

4

1 2 3

1 2 3 4 1 2 4 3 1 3 2 4

1 3 4 2 1 4 2 3 1 4 3 2

2 1 3 4 2 1 4 3 2 3 1 4

2 4 1 3 3 1 2 4 3 2 1 4

Next we will see how Cayley’s formula can be derived using Prüfer codes.
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Prüfer code

A Prüfer code is a sequence of n−2 numbers that describes a labeled tree. The
code is calculated by removing n−2 leaves from the tree. At each step, we remove
the leaf whose number is the smallest, and simultaneously add the number of its
only neighbor to the code.

For example, the Prüfer code for

1 2

3 4

5

is [4,4,2], because we first remove node 1, then node 3 and finally node 5.
We can calculate a Prüfer code for any tree, and more importantly, the original

tree can be constructed from the Prüfer code. Hence, the number of labeled trees
equals the number of Prüfer codes that is nn−2.
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Chapter 23

Matrices

A matrix is a mathematical concept that corresponds to a two-dimensional array
in programming. For example,

A =
6 13 7 4

7 0 8 2
9 5 4 18


is a matrix of size 3×4, i.e., it has 3 rows and 4 columns. The notation [i, j] refers
to the element in row i and column j in a matrix. For example, in the above
matrix, A[2,3]= 8 and A[3,1]= 9.

A special case of a matrix is a vector that is a one-dimensional matrix of size
n×1. For example,

V =
4

7
5


is a vector that contains three elements.

The transpose AT of a matrix A is obtained when the rows and columns in
A are swapped, i.e., AT[i, j]= A[ j, i]:

AT =


6 7 9

13 0 5
7 8 4
4 2 18


A matrix is a square matrix if it has the same number of rows and columns.

For example, the following matrix is a square matrix:

S =
3 12 4

5 9 15
0 2 4



23.1 Operations
The sum A+B of matrices A and B is defined if the matrices are of the same
size. The result is a matrix where each element is the sum of the corresponding
elements in matrices A and B.
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For example,[
6 1 4
3 9 2

]
+

[
4 9 3
8 1 3

]
=

[
6+4 1+9 4+3
3+8 9+1 2+3

]
=

[
10 10 7
11 10 5

]
.

Multiplying a matrix A by a value x means that we multiply each element in
A by x.

For example,

2 ·
[
6 1 4
3 9 2

]
=

[
2 ·6 2 ·1 2 ·4
2 ·3 2 ·9 2 ·2

]
=

[
12 2 8
6 18 4

]
.

Matrix multiplication

The product AB of matrices A and B is defined if A is of size a×n and B is of
size n× b, i.e., the width of A equals the height of B. The result is a matrix of
size a×b whose elements are calculated using the formula

AB[i, j]=
n∑

k=1
A[i,k] ·B[k, j].

The idea is that each element in AB is a sum of products of elements in A
and B according to the following picture:

A AB

B

For example,1 4
3 9
8 6

 ·
[
1 6
2 9

]
=

1 ·1+4 ·2 1 ·6+4 ·9
3 ·1+9 ·2 3 ·6+9 ·9
8 ·1+6 ·2 8 ·6+6 ·9

=
 9 42

21 99
20 102

 .

Matrix multiplication is not commutative, so AB = BA doesn’t hold. However,
it is associative, so A(BC)= (AB)C holds.

An identity matrix is a square matrix where each element on the diagonal
is 1, and all other elements are 0. For example, the 3×3 identity matrix is as
follows:

I =
1 0 0

0 1 0
0 0 1
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Multiplying a matrix by an identity matrix doesn’t change it. For example,1 0 0
0 1 0
0 0 1

 ·
1 4

3 9
8 6

=
1 4

3 9
8 6

 ja

1 4
3 9
8 6

 ·
[
1 0
0 1

]
=

1 4
3 9
8 6

 .

Using a straightforward algorithm, we can calculate the product of two n×n
matrices in O(n3) time. There are also more efficient algorithms for matrix multi-
plication: at the moment, the best known time complexity is O(n2.37). However,
such special algorithms are not needed in competitive programming.

Matrix power

The power Ak of a matrix A is defined if A is a square matrix. The definition is
based on matrix multiplication:

Ak = A · A · A · · ·A︸ ︷︷ ︸
k times

For example,

[
2 5
1 4

]3

=
[
2 5
1 4

]
·
[
2 5
1 4

]
·
[
2 5
1 4

]
=

[
48 165
33 114

]
.

In addition, A0 is an identity matrix. For example,[
2 5
1 4

]0

=
[
1 0
0 1

]
.

The matrix Ak can be efficiently calculated in O(n3 logk) time using the
algorithm in Chapter 21.2. For example,[

2 5
1 4

]8

=
[
2 5
1 4

]4

·
[
2 5
1 4

]4

.

Determinant

The determinant det(A) of a matrix A is defined if A is a square matrix. If
A is of size 1×1, then det(A) = A[1,1]. The determinant of a larger matrix is
calculated recursively using the formula

det(A)=
n∑

j=1
A[1, j]C[1, j],

where C[i, j] is the cofactor of A at [i, j]. The cofactor is calculated using the
formula

C[i, j]= (−1)i+ j det(M[i, j]),
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where M[i, j] is a copy of matrix A where row i and column j are removed.
Because of the multiplier (−1)i+ j in the cofactor, every other determinant is
positive and negative.

For example,

det(
[
3 4
1 6

]
)= 3 ·6−4 ·1= 14

and

det(

2 4 3
5 1 6
7 2 4

)= 2 ·det(
[
1 6
2 4

]
)−4 ·det(

[
5 6
7 4

]
)+3 ·det(

[
5 1
7 2

]
)= 81.

The determinant indicates if matrix A has an inverse matrix A−1 for which
A · A−1 = I, where I is an identity matrix. It turns out that A−1 exists exactly
when det(A) 6= 0, and it can be calculated using the formula

A−1[i, j]= C[ j, i]
det(A)

.

For example, 2 4 3
5 1 6
7 2 4


︸ ︷︷ ︸

A

· 1
81

−8 −10 21
22 −13 3
3 24 −18


︸ ︷︷ ︸

A−1

=
1 0 0

0 1 0
0 0 1


︸ ︷︷ ︸

I

.

23.2 Linear recurrences
A linear recurrence can be represented as a function f (n) with initial values
f (0), f (1), . . . , f (k−1), whose values for k and larger parameters are calculated
recursively using a formula

f (n)= c1 f (n−1)+ c2 f (n−2)+ . . .+ ck f (n−k),

where c1, c2, . . . , ck are constant multipliers.
We can use dynamic programming to calculate any value f (n) in O(kn) time

by calculating all values f (0), f (1), . . . , f (n) one after another. However, if k is
small, it is possible to calculate f (n) much more efficiently in O(k3 logn) time
using matrix operations.

Fibonacci numbers

A simple example of a linear recurrence is the function that calculates Fibonacci
numbers:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)
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In this case, k = 2 and c1 = c2 = 1.
The idea is to represent the formula for calculating Fibonacci numbers as a

square matrix X of size 2×2 for which the following holds:

X ·
[

f (i)
f (i+1)

]
=

[
f (i+1)
f (i+2)

]
Thus, values f (i) and f (i+1) are given as ”input” for X , and X constructs values
f (i+1) and f (i+2) from them. It turns out that such a matrix is

X =
[
0 1
1 1

]
.

For example, [
0 1
1 1

]
·
[

f (5)
f (6)

]
=

[
0 1
1 1

]
·
[
5
8

]
=

[
8

13

]
=

[
f (6)
f (7)

]
.

Thus, we can calculate f (n) using the formula[
f (n)

f (n+1)

]
= X n ·

[
f (0)
f (1)

]
=

[
0 1
1 1

]n

·
[
0
1

]
.

The power X n on can be calculated in O(k3 logn) time, so the value f (n) can also
be calculated in O(k3 logn) time.

General case

Let’s now consider a general case where f (n) is any linear recurrence. Again, our
goal is to construct a matrix X for which

X ·


f (i)

f (i+1)
...

f (i+k−1)

=


f (i+1)
f (i+2)

...
f (i+k)

 .

Such a matrix is

X =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · 1
ck ck−1 ck−2 ck−3 · · · c1


.

In the first k−1 rows, each element is 0 except that one element is 1. These rows
replace f (i) with f (i+1), f (i+1) with f (i+2), etc. The last row contains the
multipliers in the recurrence, and it calculates the new value f (i+k).

Now, f (n) can be calculated in O(k3 logn) time using the formula
f (n)

f (n+1)
...

f (n+k−1)

= X n ·


f (0)
f (1)

...
f (k−1)

 .
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23.3 Graphs and matrices

Counting paths

The powers of an adjacency matrix of a graph have an interesting property. When
V is an adjacency matrix of an unweighted graph, the matrix V n contains the
numbers of paths of n edges between the nodes in the graph.

For example, for the graph

1

4

2 3

5 6

the adjacency matrix is

V =



0 0 0 1 0 0
1 0 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0

 .

Now, for example, the matrix

V 4 =



0 0 1 1 1 0
2 0 0 0 2 2
0 2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0


contains the numbers of paths of 4 edges between the nodes. For example,
V 4[2,5] = 2, because there are two paths of 4 edges from node 2 to node 5:
2→ 1→ 4→ 2→ 5 and 2→ 6→ 3→ 2→ 5.

Shortest paths

Using a similar idea in a weighted graph, we can calculate for each pair of nodes
the shortest path between them that contains exactly n edges. To calculate this,
we have to define matrix multiplication in another way, so that we don’t calculate
the number of paths but minimize the length of a path.
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As an example, consider the following graph:

1

4

2 3

5 6

4 1

2 4

1 2 3

2

Let’s construct an adjacency matrix where ∞ means that an edge doesn’t
exist, and other values correspond to edge weights. The matrix is

V =



∞ ∞ ∞ 4 ∞ ∞
2 ∞ ∞ ∞ 1 2
∞ 4 ∞ ∞ ∞ ∞
∞ 1 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 3 ∞ 2 ∞

 .

Instead of the formula

AB[i, j]=
n∑

k=1
A[i,k] ·B[k, j]

we now use the formula

AB[i, j]=
n

min
k=1

A[i,k]+B[k, j],

for matrix multiplication, so we calculate a minimum instead of a sum, and a
sum of elements instead of a product. After this modification, matrix powers can
be used for calculating shortest paths in the graph:

V 4 =



∞ ∞ 10 11 9 ∞
9 ∞ ∞ ∞ 8 9
∞ 11 ∞ ∞ ∞ ∞
∞ 8 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 12 13 11 ∞


For example, the shortest path of 4 edges from node 2 to node 5 has length 8.
This path is 2→ 1→ 4→ 2→ 5.

Kirchhoff’s theorem

Kirchhoff’s theorem provides us a way to calculate the number of spanning
trees in a graph as a determinant of a special matrix. For example, the graph

1 2

3 4
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has three spanning trees:

1 2

3 4

1 2

3 4

1 2

3 4

We construct a Laplacean matrix L, where L[i, i] is the degree of node i and
L[i, j]=−1 if there is an edge between nodes i and j, and otherwise L[i, j]= 0. In
this graph, the matrix is as follows:

L =


3 −1 −1 −1
−1 1 0 0
−1 0 2 −1
−1 0 −1 2


The number of spanning trees is the same as the determinant of a matrix

that is obtained when we remove any row and any column from L. For example,
if we remove the first row and column, the result is

det(

1 0 0
0 2 −1
0 −1 2

)= 3.

The determinant is always the same, regardless of which row and column we
remove from L.

Note that a special case of Kirchhoff ’s theorem is Cayley’s formula in Chapter
22.5, because in a complete graph of n nodes

det(


n−1 −1 · · · −1
−1 n−1 · · · −1
...

... . . . ...
−1 −1 · · · n−1

)= nn−2.
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Chapter 24

Probability

A probability is a number between 0 . . .1 that indicates how probable an event is.
If an event is certain to happen, its probability is 1, and if an event is impossible,
its probability is 0.

A typical example is throwing a dice, where the result is an integer between
1,2, . . . ,6. Usually it is assumed that the probability for each result is 1/6, so all
results have the same probability.

The probability of an event is denoted P(· · · ) where the three dots are a
description of the event. For example, when throwing a dice, P(”the result is 4”)=
1/6, P(”the result is not 6”)= 5/6 and P(”the result is even”)= 1/2.

24.1 Calculation

There are two standard ways to calculate probabilities: combinatorial counting
and simulating a process. As an example, let’s calculate the probability of drawing
three cards with the same value from a shuffled deck of cards (for example, eight
of spades, eight of clubs and eight of diamonds).

Method 1

We can calculate the probability using the formula

desired cases
all cases

.

In this problem, the desired cases are those in which the value of each card is
the same. There are 13

(4
3

)
such cases, because there are 13 possibilities for the

value of the cards and
(4
3

)
ways to choose 3 suits from 4 possible suits.

The number of all cases is
(52

3

)
, because we choose 3 cards from 52 cards. Thus,

the probability of the event is

13
(4
3

)(52
3

) = 1
425

.
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Method 2

Another way to calculate the probability is to simulate the process that generates
the event. In this case, we draw three cards, so the process consists of three steps.
We require that each step in the process is successful.

Drawing the first card certainly succeeds, because any card will do. After this,
the value of the cards has been fixed. The second step succeeds with probability
3/51, because there are 51 cards left and 3 of them have the same value as the
first card. Finally, the third step succeeds with probability 2/50.

The probability that the entire process succeeds is

1 · 3
51

· 2
50

= 1
425

.

24.2 Events
An event in probability can be represented as a set

A ⊂ X ,

where X contains all possible outcomes, and A is a subset of outcomes. For
example, when drawing a dice, the outcomes are

X = {x1, x2, x3, x4, x5, x6},

where xk means the result k. Now, for example, the event ”the result is even”
corresponds to the set

A = {x2, x4, x6}.

Each outcome x is assigned a probability p(x). Furthermore, the probabil-
ity P(A) of an event that corresponds to a set A can be calcuted as a sum of
probabilities of outcomes using the formula

P(A)= ∑
x∈A

p(x).

For example, when throwing a dice, p(x)= 1/6 for each outcome x, so the proba-
bility for the event ”the result is even” is

p(x2)+ p(x4)+ p(x6)= 1/2.

The total probability of the outcomes in X must be 1, i.e., P(X )= 1.
Since the events in probability are sets, we can manipulate them using

standard set operations:

• The complement Ā means ”A doesn’t happen”. For example, when throw-
ing a dice, the complement of A = {x2, x4, x6} is Ā = {x1, x3, x5}.

• The union A ∪B means ”A or B happen”. For example, the union of
A = {x2, x5} and B = {x4, x5, x6} is A∪B = {x2, x4, x5, x6}.

• The intersection A∩B means ”A and B happen”. For example, the inter-
section of A = {x2, x5} and B = {x4, x5, x6} is A∩B = {x5}.
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Complement

The probability of the complement Ā is calculated using the formula

P(Ā)= 1−P(A).

Sometimes, we can solve a problem easily using complements by solving an
opposite problem. For example, the probability of getting at least one six when
throwing a dice ten times is

1− (5/6)10.

Here 5/6 is the probability that the result of a single throw is not six, and
(5/6)10 is the probability that none of the ten throws is a six. The complement of
this is the answer for the problem.

Union

The probability of the union A∪B is calculated using the formula

P(A∪B)= P(A)+P(B)−P(A∩B).

For example, when throwing a dice, the union of events

A = ”the result is even”

and
B = ”the result is less than 4”

is
A∪B = ”the result is even or less than 4”,

and its probability is

P(A∪B)= P(A)+P(B)−P(A∩B)= 1/2+1/2−1/6= 5/6.

If the events A and B are disjoint, i.e., A∩B is empty, the probability of the
event A∪B is simply

P(A∪B)= P(A)+P(B).

Conditional probability

The conditional probability

P(A|B)= P(A∩B)
P(B)

is the probability of an event A assuming that an event happens. In this case,
when calculating the probability of A, we only consider the outcomes that also
belong to B.

Using the sets in the previous example,

P(A|B)= 1/3,

Because the outcomes in B are {x1, x2, x3}, and one of them is even. This is the
probability of an even result if we know that the result is between 1 . . .3.
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Intersection

Using conditional probability, the probability of the intersection A ∩B can be
calculated using the formula

P(A∩B)= P(A)P(B|A).

Events A and B are independent if

P(A|B)= P(A) and P(B|A)= P(B),

which means that the fact that B happens doesn’t change the probability of A,
and vice versa. In this case, the probability of the intersection is

P(A∩B)= P(A)P(B).

For example, when drawing a card from a deck, the events

A = ”the suit is clubs”

and
B = ”the value is four”

are independent. Hence the event

A∩B = ”the card is the four of clubs”

happens with probability

P(A∩B)= P(A)P(B)= 1/4 ·1/13= 1/52.

24.3 Random variables

A random variable is a value that is generated by a random process. For
example, when throwing two dice, a possible random variable is

X = ”the sum of the results”.

For example, if the results are (4,6), then the value of X is 10.
We denote P(X = x) the probability that the value of a random variable X is

x. In the previous example, P(X = 10)= 3/36, because the total number of results
is 36, and the possible ways to obtain the sum 10 are (4,6), (5,5) and (6,4).

Expected value

The expected value E[X ] indicates the average value of a random variable X .
The expected value can be calculated as the sum∑

x
P(X = x)x,

216



where x goes through all possible results for X .
For example, when throwing a dice, the expected value is

1/6 ·1+1/6 ·2+1/6 ·3+1/6 ·4+1/6 ·5+1/6 ·6= 7/2.

A useful property of expected values is linearity. It means that the sum
E[X1 + X2 + ·· · + Xn] always equals the sum E[X1]+E[X2]+ ·· · +E[Xn]. This
formula holds even if random variables depend on each other.

For example, when throwing two dice, the expected value of their sum is

E[X1 + X2]= E[X1]+E[X2]= 7/2+7/2= 7.

Let’s now consider a problem where n balls are randomly placed in n boxes,
and our task is to calculate the expected number of empty boxes. Each ball has
an equal probability to be placed in any of the boxes. For example, if n = 2, the
possibilities are as follows:

In this case, the expected number of empty boxes is

0+0+1+1
4

= 1
2

.

In the general case, the probability that a single box is empty is(n−1
n

)n
,

because no ball should be placed in it. Hence, using linearity, the expected
number of empty boxes is

n ·
(n−1

n

)n
.

Distributions

The distribution of a random variable X shows the probability for each value
that the random variable may have. The distribution consists of values P(X = x).
For example, when throwing two dice, the distribution for their sum is:

x 2 3 4 5 6 7 8 9 10 11 12
P(X = x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Next, we will discuss three distributions that often arise in applications.

In a uniform distribution, the value of a random variable is between a . . .b,
and the probability for each value is the same. For example, throwing a dice
generates a uniform distribution where P(X = x)= 1/6 when x = 1,2, . . . ,6.
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The expected value for X in a uniform distribution is

E[X ]= a+b
2

.

In a binomial distribution, n attempts are done and the probability that a
single attempt succeeds is p. The random variable X counts the number of
successful attempts, and the probability for a value x is

P(X = x)= px(1− p)n−x

(
n
x

)
,

where px and (1− p)n−x correspond to successful and unsuccessful attemps, and(n
x
)

is the number of ways we can choose the order of the attempts.
For example, when throwing a dice ten times, the probability of throwing a

six exactly three times is (1/6)3(5/6)7(10
3

)
.

The expected value for X in a binomial distribution is

E[X ]= pn.

In a geometric distribution, the probability that an attempt succeeds is p, and
we do attempts until the first success happens. The random variable X counts
the number of attempts needed, and the probability for a value x is

P(X = x)= (1− p)x−1 p,

where (1− p)x−1 corresponds to unsuccessful attemps and p corresponds to the
first successful attempt.

For example, if we throw a dice until we throw a six, the probability that the
number of throws is exactly 4 is (5/6)31/6.

The expected value for X in a geometric distribution is

E[X ]= 1
p

.

24.4 Markov chains
A Markov chain is a random process that consists of states and transitions
between them. For each state, we know the probabilities for moving to other
states. A Markov chain can be represented as a graph whose nodes are states
and edges are transitions.

As an example, let’s consider a problem where we are in floor 1 in a n floor
building. At each step, we randomly walk either one floor up or one floor down,
except that we always walk one floor up from floor 1 and one floor down from
floor n. What is the probability that we are in floor m after k steps?

In this problem, each floor of the building corresponds to a state in a Markov
chain. For example, if n = 5, the graph is as follows:
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1 2 3 4 5

1 1/2 1/2 1/2

11/21/21/2

The probability distribution of a Markov chain is a vector [p1, p2, . . . , pn],
where pk is the probability that the current state is k. The formula p1+ p2+·· ·+
pn = 1 always holds.

In the example, the initial distribution is [1,0,0,0,0], because we always begin
at floor 1. The next distribution is [0,1,0,0,0], because we can only move from
floor 1 to floor 2. After this, we can either move one floor up or one floor down, so
the next distribution is [1/2,0,1/2,0,0], etc.

An efficient way to simulate the walk in a Markov chain is to use dynaimc
programming. The idea is to maintain the probability distribution and at each
step go through all possibilities how we can move. Using this method, we can
simulate m steps in O(n2m) time.

The transitions of a Markov chain can also be represented as a matrix that
updates the probability distribution. In this case, the matrix is

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0

 .

When we multiply a probability distribution by this matrix, we get the new
distribution after moving one step. For example, we can move from the distribu-
tion [1,0,0,0,0] to the distribution [0,1,0,0,0] as follows:

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0




1
0
0
0
0

=


0
1
0
0
0

 .

By calculating matrix powers efficiently, we can calculate in O(n3 logm) time
the distribution after m steps.

24.5 Randomized algorithms

Sometimes we can use randomness for solving a problem, even if the problem is
not related to random events. A randomized algorithm is an algorithm that is
based on randomness.

A Monte Carlo algorithm is a randomized algorithm that may sometimes
give a wrong answer. For such an algorithm to be useful, the probability of a
wrong answer should be small.
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A Las Vegas algorithm is a randomized algorithm that always gives the
correct answer, but its running time varies randomly. The goal is to design an
algorithm that is efficient with high probability.

Next we will go through three example problems that can be solved using
randomness.

Order statistics

The kth order statistic of an array is the element at index k after sorting the
array in increasing order. It’s easy to calculate any order statistic in O(n logn)
time by sorting the array, but is it really needed to sort the whole array to just
find one element?

It turns out that we can find order statistics using a randomized algorithm
without sorting the array. The algorithm is an Las Vegas algorithm: its running
time is usually O(n), but O(n2) in the worst case.

The algorithm chooses a random element x in the array, and moves elements
smaller than x to the left part of the array, and the other elements to the right
part of the array. This takes O(n) time when there are n elements. Assume
that the left part contains a elements and the right part contains b elements. If
a = k−1, element x is the kth order statistic. Otherwise, if a > k−1, we recursively
find the kth order statistic for the left part, and if a < k−1, we recursively find
the rth order statistic for the right part where r = k−a−1. The search continues
like this, until the element has been found.

When each element x is randomly chosen, the size of the array about halves
at each step, so the time complexity for finding the kth order statistic is about

n+n/2+n/4+n/8+·· · =O(n).

The worst case for the algorithm is still O(n2), because it is possible that x is
always chosen in such a way that it’s the smallest or largest element in the array.
In this case, the size of the array decreases only by one at each step. However,
the probability for this is so small that this never happens in practice.

Verifying matrix multiplication

Our next problem is to verify if AB = C holds when A, B and C are matrices of
size n×n. Of course, we can solve the problem by calculating the product AB
again (in O(n3) time using the basic algorithm), but one could hope that verifying
the answer would by easier than to calculate it again.

It turns out that we can solve the problem using a Monte Carlo algorithm
whose time complexity is only O(n2). The idea is simple: we choose a random
vector X of n elements, and calculate the matrices ABX and CX . If ABX = CX ,
we report that AB = C, and otherwise we report that AB 6= C.

The time complexity of the algorithm is O(n2), because we can calculate
the matrices ABX and CX in O(n2) time. We can calculate the matrix ABX
efficiently using the representation A(BX ), so only two multiplications of n×n
and n×1 size matrices are needed.
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The weakness in the algorithm is that there is a small chance that the
algorithm makes a mistake when it reports that AB = C. For example,[

2 4
1 6

]
6=

[
0 5
7 4

]
,

but [
2 4
1 6

][
1
3

]
=

[
0 5
7 4

][
1
3

]
.

However, in practice, the probability that the algorithm makes a mistake is
small, and we can decrease the probability by verifying the result using multiple
random vectors X before reporting the answer AB = C.

Graph coloring

Given a graph that contains n nodes and m edges, our task is to find a way to
color the nodes of the graph using two colors so that for at least m/2 edges, the
end nodes have different colors. For example, in the graph

1 2

3 4

5

a valid coloring is as follows:

1 2

3 4

5

The above graph contains 7 edges, and for 5 of them, the end nodes have different
colors, so the coloring is valid.

The problem can be solved using a Las Vegas algorithm that generates random
colorings until a valid coloring has been found. In a random coloring, the color of
each node is independently chosen so that the probability of both colors is 1/2.

In a random coloring, the probability that the end nodes of a single edge have
different colors is 1/2. Hence, the expected number of edges whose end nodes
have different colors is 1/2 ·m = m/2. Since it is excepted that a random coloring
is valid, we’ll find a valid coloring quickly in practice.
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2SUM problem, 76
3SAT problem, 154
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acyclic graph, 105
adjacency list, 106
adjacency matrix, 108
amortized analysis, 75
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antichain, 182
arithmetic sum, 10

backtracking, 48
Bellman–Ford algorithm, 117
binary code, 60
binary indexed tree, 84
binary search, 29
binary tree, 131
binomial coefficient, 196
binomial distribution, 218
bipartite graph, 106, 116
bit representation, 93
bit shift, 95
bitset, 39
bitset, 39
breadth-first search, 113
bubble sort, 23
Burnside’s lemma, 202

Catalan number, 198
Cayley’s formula, 203
child, 127
Chinese remainder theorem, 192
codeword, 60
cofactor, 207
coloring, 106, 221
combinatorics, 195
comparison function, 29
comparison operator, 28

complement, 11
complete graph, 105
complexity classes, 18
compomnent, 104
component graph, 149
conditional probability, 215
conjuction, 12
connected graph, 104, 115
constant factor, 19
constant-time algorithm, 18
coprime, 189
counting sort, 27
cubic algorithm, 18
cut, 172
cycle, 105, 115, 141, 147
cycle detection, 147

data compression, 60
data structure, 33
De Bruijn sequence, 168
degree, 105
depth-first search, 111
deque, 40
deque, 40
derangement, 201
determinant, 207
diameter, 129
difference, 11
Dijkstra’s algorithm, 120, 144
Dilworth’s theorem, 182
Diophantine equation, 191
Dirac’s theorem, 167
directed graph, 104
disjunction, 12
distribution, 217
divisibility, 185
divisor, 185
dynamic array, 33
dynamic programming, 63
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edge, 103
edge list, 109
edit distance, 71
Edmonds–Karp algorithm, 174
equivalence, 12
Euclid’s algorithm, 188, 191
Euclid’s formula, 194
Euler’s theorem, 190
Euler’s totient function, 189
Eulerian circuit, 163
Eulerian path, 163
expected value, 216
extended Euclid’s algorithm, 192

factor, 185
factorial, 13
Fenwick tree, 84
Fermat’s theorem, 190
Fibonacci number, 13, 193, 208
floating point number, 7
flow, 171
Floyd’s algorithm, 147
Floyd–Warshall algorithm, 123
Ford–Fulkerson algorithm, 172
functional graph, 146

geometric distribution, 218
geometric sum, 10
Goldbach’s conjecture, 187
graph, 103
greatest common divisor, 188
greedy algorithm, 55

hakemisto, 36
Hall’s theorem, 178
Hamiltonian circuit, 167
Hamiltonian path, 167
harmonic sum, 11, 188
heap, 41
heuristic, 169
Hierholzer’s algorithm, 165
Huffman coding, 61

identity matrix, 206
implication, 12
in-order, 132
inclusion-exclusion, 200
indegree, 105

independence, 216
independent set, 180
index compression, 91
input and output, 4
integer, 6
intersection, 11
inverse matrix, 208
inversion, 24
iterator, 37

Kőnig’s theorem, 179
Kirchhoff ’s theorem, 211
knapsack, 70
knight’s tour, 169
Kosaraju’s algorithm, 150
Kruskal’s algorithm, 134

Lagrange’s theorem, 193
Laplacean matrix, 212
Las Vegas algorithm, 219
leaf, 127
least common multiple, 188
Legendre’s conjecture, 187
Levenshtein distance, 71
linear algorithm, 18
linear recurrence, 208
logarithm, 14
logarithmic algorithm, 18
logic, 12
longest increasing subsequence, 68
lowest common ancestor, 159

macro, 9
map, 36
Markov chain, 218
matching, 177
matrix, 205
matrix multiplication, 206, 220
matrix power, 207
maximum flow, 171
maximum independent set, 180
maximum matching, 177
maximum query, 81
maximum spanning tree, 134
maximum subarray sum, 19
meet in the middle, 52
memoization, 65
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merge sort, 25
minimum cut, 172, 175
minimum node cover, 179
minimum query, 81
minimum spanning tree, 133
modular arithmetic, 6, 189
modular inverse, 190
Monte Carlo algorithm, 219
multinomial coefficient, 198
multiset, 36

natural logarithm, 14
nearest smaller elements, 77
negation, 12
negative cycle, 119
neighbor, 105
next_permutation, 47
node, 103
node array, 156
node cover, 179
not operation, 95
NP-hard problem, 18
number theory, 185

or operation, 94
order statistic, 220
Ore’s theorem, 167
outdegree, 105

pair, 28
parent, 127
parenthesis expression, 199
Pascal’s triangle, 197
path, 103
path cover, 180
perfect matching, 178
perfect number, 186
permutation, 47
polynomial algorithm, 18
post-order, 132
Prüfer code, 204
pre-order, 132
predicate, 12
prefix sum array, 82
Prim’s algorithm, 139
prime, 185
prime decomposition, 185

priority queue, 41
priority_queue, 41
probability, 213
programming language, 3
Pythagorean triple, 194

quadratic algorithm, 18
quantifier, 12
queen problem, 48
queue, 41
queue, 41

random variable, 216
random_shuffle, 37
randomized algorithm, 219
range query, 81
regular graph, 105
remainder, 6
reverse, 37
root, 127
rooted tree, 127

scaling algorithm, 175
segment tree, 86
set, 11, 35
set, 35
set theory, 11
shortest path, 117
sieve of Eratosthenes, 188
simple graph, 106
sliding window, 79
sliding window minimum, 79
sort, 27, 37
sorting, 23
spanning tree, 133, 211
SPFA algorithm, 120
square matrix, 205
stack, 40
stack, 40
string, 34
string, 34
strongly connected component, 149
strongly connected graph, 149
subset, 11, 45
subtree, 127
successor graph, 146
sum query, 81
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time complexity, 15
topological sorting, 141
transpose, 205
tree, 104, 127
tree query, 155
tuple, 28
typedef, 8
twin prime, 187
two pointers method, 75

uniform distribution, 217
union, 11
union-find structure, 137
universal set, 11
unordered_map, 36
unordered_multiset, 36
unordered_set, 35

vector, 33, 205
vector, 33

Warnsdorff ’s rule, 169
weighted graph, 105
Wilson’s theorem, 194

xor operation, 94

Zeckendorf ’s theorem, 193
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