\chapter{Combinatorics} \index{combinatorics} \key{Combinatorics} studies methods for counting combinations of objects. Usually, the goal is to find a way to count the combinations efficiently without generating each combination separately. As an example, let's consider a problem where our task is to calculate the number of representations for an integer $n$ as a sum of positive integers. For example, there are 8 representations for the number $4$: \begin{multicols}{2} \begin{itemize} \item $1+1+1+1$ \item $1+1+2$ \item $1+2+1$ \item $2+1+1$ \item $2+2$ \item $3+1$ \item $1+3$ \item $4$ \end{itemize} \end{multicols} A combinatorial problem can often be solved using a recursive function. In this case, we can define a function $f(n)$ that counts the number of representations for $n$. For example, $f(4)=8$ according to the above example. The function can be recursively calculated as follows: \begin{equation*} f(n) = \begin{cases} 1 & n = 1\\ f(1)+f(2)+\ldots+f(n-1)+1 & n > 1\\ \end{cases} \end{equation*} The base case is $f(1)=1$, because there is only one way to represent the number 1. Otherwise, we go through all possibilities for the last number in the sum. For example, in when $n=4$, the sum can end with $+1$, $+2$ or $+3$. In addition, we also count the representation that only contains $n$. The first values for the function are: \[ \begin{array}{lcl} f(1) & = & 1 \\ f(2) & = & 2 \\ f(3) & = & 4 \\ f(4) & = & 8 \\ f(5) & = & 16 \\ \end{array} \] It turns out that the function also has a closed-form formula \[ f(n)=2^{n-1}, \] which is based on the fact that there are $n-1$ possible positions for +-signs in the sum, and we can choose any subset of them. \section{Binomial coefficient} \index{binomial coefficient} A \key{binomial coefficient} ${n \choose k}$ is the number of ways we can choose a subset of $k$ elements from a set of $n$ elements. For example, ${5 \choose 3}=10$, because the set $\{1,2,3,4,5\}$ has 10 subsets of 3 elements: \[ \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}, \{3,4,5\} \] \subsubsection{Formula 1} Binomial coefficients can be recursively calculated as follows: \[ {n \choose k} = {n-1 \choose k-1} + {n-1 \choose k} \] The idea is to consider a fixed element $x$ in the set. If $x$ is included in the subset, the remaining task is to choose $k-1$ elements from $n-1$ elements, and otherwise the remaining task is to choose $k$ elements from $n-1$ elements. The base cases for the recursion are as follows: \[ {n \choose 0} = {n \choose n} = 1 \] The reason for this is that there is always one way to construct an empty subset, or a subset that contains all the elements. \subsubsection{Formula 2} Another way to calculate binomial coefficients is as follows: \[ {n \choose k} = \frac{n!}{k!(n-k)!}. \] There are $n!$ permutations for $n$ elements. We go through all permutations and in each case select the first $k$ elements of the permutation to the subset. Since the order of the elements in the subset and outside the subset doesn't matter, the result is divided by $k!$ and $(n-k)!$ \subsubsection{Properties} For binomial coefficients, \[ {n \choose k} = {n \choose n-k}, \] because we can either select $k$ elements to the subset, or select $n-k$ elements that will be outside the subset. The sum of binomial coefficients is \[ {n \choose 0}+{n \choose 1}+{n \choose 2}+\ldots+{n \choose n}=2^n. \] The reason for the name ''binomial coefficient'' is that \[ (a+b)^n = {n \choose 0} a^n b^0 + {n \choose 1} a^{n-1} b^1 + \ldots + {n \choose n-1} a^1 b^{n-1} + {n \choose n} a^0 b^n. \] \index{Pascal's triangle} Binomial coefficients also appear in \key{Pascal's triangle} whose border consists of 1's, and each value is the sum of two above values: \begin{center} \begin{tikzpicture}{0.9} \node at (0,0) {1}; \node at (-0.5,-0.5) {1}; \node at (0.5,-0.5) {1}; \node at (-1,-1) {1}; \node at (0,-1) {2}; \node at (1,-1) {1}; \node at (-1.5,-1.5) {1}; \node at (-0.5,-1.5) {3}; \node at (0.5,-1.5) {3}; \node at (1.5,-1.5) {1}; \node at (-2,-2) {1}; \node at (-1,-2) {4}; \node at (0,-2) {6}; \node at (1,-2) {4}; \node at (2,-2) {1}; \node at (-2,-2.5) {$\ldots$}; \node at (-1,-2.5) {$\ldots$}; \node at (0,-2.5) {$\ldots$}; \node at (1,-2.5) {$\ldots$}; \node at (2,-2.5) {$\ldots$}; \end{tikzpicture} \end{center} \subsubsection{Boxes and balls} ''Boxes and models'' is a useful model, where we count the ways to place $k$ balls in $n$ boxes. Let's consider three cases: \textit{Case 1}: Each box can contain at most one ball. For example, when $n=5$ and $k=2$, there are 10 solutions: \begin{center} \begin{tikzpicture}[scale=0.5] \newcommand\lax[3]{ \path[draw,thick,-] (#1-0.5,#2+0.5) -- (#1-0.5,#2-0.5) -- (#1+0.5,#2-0.5) -- (#1+0.5,#2+0.5); \ifthenelse{\equal{#3}{1}}{\draw[fill=black] (#1,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1-0.2,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1+0.2,#2-0.3) circle (0.15);}{} } \newcommand\laa[7]{ \lax{#1}{#2}{#3} \lax{#1+1.2}{#2}{#4} \lax{#1+2.4}{#2}{#5} \lax{#1+3.6}{#2}{#6} \lax{#1+4.8}{#2}{#7} } \laa{0}{0}{1}{1}{0}{0}{0} \laa{0}{-2}{1}{0}{1}{0}{0} \laa{0}{-4}{1}{0}{0}{1}{0} \laa{0}{-6}{1}{0}{0}{0}{1} \laa{8}{0}{0}{1}{1}{0}{0} \laa{8}{-2}{0}{1}{0}{1}{0} \laa{8}{-4}{0}{1}{0}{0}{1} \laa{16}{0}{0}{0}{1}{1}{0} \laa{16}{-2}{0}{0}{1}{0}{1} \laa{16}{-4}{0}{0}{0}{1}{1} \end{tikzpicture} \end{center} In this case, the answer is directly the binomial coefficient ${n \choose k}$. \textit{Case 2}: A box can contain multiple balls. For example, when $n=5$ and $k=2$, there are 15 solutions: \begin{center} \begin{tikzpicture}[scale=0.5] \newcommand\lax[3]{ \path[draw,thick,-] (#1-0.5,#2+0.5) -- (#1-0.5,#2-0.5) -- (#1+0.5,#2-0.5) -- (#1+0.5,#2+0.5); \ifthenelse{\equal{#3}{1}}{\draw[fill=black] (#1,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1-0.2,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1+0.2,#2-0.3) circle (0.15);}{} } \newcommand\laa[7]{ \lax{#1}{#2}{#3} \lax{#1+1.2}{#2}{#4} \lax{#1+2.4}{#2}{#5} \lax{#1+3.6}{#2}{#6} \lax{#1+4.8}{#2}{#7} } \laa{0}{0}{2}{0}{0}{0}{0} \laa{0}{-2}{1}{1}{0}{0}{0} \laa{0}{-4}{1}{0}{1}{0}{0} \laa{0}{-6}{1}{0}{0}{1}{0} \laa{0}{-8}{1}{0}{0}{0}{1} \laa{8}{0}{0}{2}{0}{0}{0} \laa{8}{-2}{0}{1}{1}{0}{0} \laa{8}{-4}{0}{1}{0}{1}{0} \laa{8}{-6}{0}{1}{0}{0}{1} \laa{8}{-8}{0}{0}{2}{0}{0} \laa{16}{0}{0}{0}{1}{1}{0} \laa{16}{-2}{0}{0}{1}{0}{1} \laa{16}{-4}{0}{0}{0}{2}{0} \laa{16}{-6}{0}{0}{0}{1}{1} \laa{16}{-8}{0}{0}{0}{0}{2} \end{tikzpicture} \end{center} This process can be represented as a string that consists of symbols ''o'' and ''$\rightarrow$''. Initially, we are standing at the leftmost box. The symbol ''o'' means we place a ball in the current box, and the symbol ''$\rightarrow$'' means that we move to the next box right. Using this notation, each solution is a string that has $k$ times the symbol ''o'' and $n-1$ times the symbol ''$\rightarrow$''. For example, the upper-right solution corresponds to the string ''$\rightarrow$ $\rightarrow$ o $\rightarrow$ o $\rightarrow$''. Thus, the number of solutions is ${k+n-1 \choose k}$. \textit{Case 3}: Each box may contain at most one ball, and in addition, no two adjacent boxes may both contain a ball. For example, when $n=5$ and $k=2$, there are 6 solutions: \begin{center} \begin{tikzpicture}[scale=0.5] \newcommand\lax[3]{ \path[draw,thick,-] (#1-0.5,#2+0.5) -- (#1-0.5,#2-0.5) -- (#1+0.5,#2-0.5) -- (#1+0.5,#2+0.5); \ifthenelse{\equal{#3}{1}}{\draw[fill=black] (#1,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1-0.2,#2-0.3) circle (0.15);}{} \ifthenelse{\equal{#3}{2}}{\draw[fill=black] (#1+0.2,#2-0.3) circle (0.15);}{} } \newcommand\laa[7]{ \lax{#1}{#2}{#3} \lax{#1+1.2}{#2}{#4} \lax{#1+2.4}{#2}{#5} \lax{#1+3.6}{#2}{#6} \lax{#1+4.8}{#2}{#7} } \laa{0}{0}{1}{0}{1}{0}{0} \laa{0}{-2}{1}{0}{0}{1}{0} \laa{8}{0}{1}{0}{0}{0}{1} \laa{8}{-2}{0}{1}{0}{1}{0} \laa{16}{0}{0}{1}{0}{0}{1} \laa{16}{-2}{0}{0}{1}{0}{1} \end{tikzpicture} \end{center} In this case, we can think that $k$ balls are initially placed in boxes. and between each such box there is an empty box. The remaining task is to choose the positions for $n-k-(k-1)=n-2k+1$ empty boxes. There are $k+1$ positions, so as in case 2, the number of solutions is ${n-2k+1+k+1-1 \choose n-2k+1} = {n-k+1 \choose n-2k+1}$. \subsubsection{Multinomial coefficient} \index{multinomial coefficient} A generalization for a binomial coefficient is a \key{multinomial coefficient} \[ {n \choose k_1,k_2,\ldots,k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}, \] where $k_1+k_2+\cdots+k_m=n$. A multinomial coefficient i the number of ways we can divide $n$ elements into subsets whose sizes are $k_1,k_2,\ldots,k_m$. If $m=2$, the formula corresponds to the binomial coefficient formula. \section{Catalan numbers} \index{Catalan number} A \key{Catalan number} $C_n$ is the number of valid parenthesis expressions that consist of $n$ left parentheses and $n$ right parentheses. For example, $C_3=5$, because using three left parentheses and three right parentheses, we can construct the following parenthesis expressions: \begin{itemize}[noitemsep] \item \texttt{()()()} \item \texttt{(())()} \item \texttt{()(())} \item \texttt{((()))} \item \texttt{(()())} \end{itemize} \subsubsection{Parenthesis expressions} \index{parenthesis expression} What is exactly a \emph{valid parenthesis expression}? The following rules precisely define all valid parenthesis expressions: \begin{itemize} \item The expression \texttt{()} is valid. \item If a expression $A$ is valid, then also the expression \texttt{(}$A$\texttt{)} is valid. \item If expressions $A$ and $B$ are valid, then also the expression $AB$ is valid. \end{itemize} Another way to characterize valid paranthesis expressions is that if we choose any prefix of the expression, it has to contain at least as many left parentheses as right parentheses. In addition, the complete expression has to contain an equal number of left and right parentheses. \subsubsection{Formula 1} Catalan numbers can be calculated using the formula \[ C_n = \sum_{i=0}^{n-1} C_{i} C_{n-i-1}.\] The sum goes through the ways to divide the expression into two parts such that both parts are valid expressions and the first part is as short as possible but not empty. For any $i$, the first part contains $i+1$ pairs of parentheses, and the number of expressions is the product of the following values: \begin{itemize} \item $C_{i}$: number of ways to construct an expression using the parentheses in the first part, not counting the outermost parentheses \item $C_{n-i-1}$: number of ways to construct an expression using the parentheses in the second part \end{itemize} In addition, the base case is $C_0=1$, because we can construct an empty parenthesis expression using zero pairs of parentheses. \subsubsection{Formula 2} Catalan numbers can also be calculated using binomial coefficients: \[ C_n = \frac{1}{n+1} {2n \choose n}\] The formula can be explained as follows: There are a total of ${2n \choose n}$ ways to construct a (not necessarily valid) parenthesis expression that contains $n$ left parentheses and $n$ right parentheses. Let's calculate the number of such expressions that are \emph{not} valid. If a parenthesis expression is not valid, it has to contain a prefix where the number of right parentheses exceeds the number of left parentheses. The idea is to reverse each parenthesis that belongs to such a prefix. For example, the expression \texttt{())()(} contains a prefix \texttt{())}, and after reversing the prefix, the expression becomes \texttt{)((()(}. The resulting expression consists of $n+1$ left parentheses and $n-1$ right parentheses. The number of such expressions is ${2n \choose n+1}$ that equals the number of non-valid parenthesis expressions. Thus the number of valid parenthesis expressions can be calculated using the formula \[{2n \choose n}-{2n \choose n+1} = {2n \choose n} - \frac{n}{n+1} {2n \choose n} = \frac{1}{n+1} {2n \choose n}.\] \subsubsection{Counting trees} Catalan numbers are also related to rooted trees: \begin{itemize} \item there are $C_n$ binary trees of $n$ nodes \item there are $C_{n-1}$ rooted trees of $n$ nodes \end{itemize} \noindent For example, for $C_3=5$, the binary trees are \begin{center} \begin{tikzpicture}[scale=0.7] \path[draw,thick,-] (0,0) -- (-1,-1); \path[draw,thick,-] (0,0) -- (1,-1); \draw[fill=white] (0,0) circle (0.3); \draw[fill=white] (-1,-1) circle (0.3); \draw[fill=white] (1,-1) circle (0.3); \path[draw,thick,-] (4,0) -- (4-0.75,-1) -- (4-1.5,-2); \draw[fill=white] (4,0) circle (0.3); \draw[fill=white] (4-0.75,-1) circle (0.3); \draw[fill=white] (4-1.5,-2) circle (0.3); \path[draw,thick,-] (6.5,0) -- (6.5-0.75,-1) -- (6.5-0,-2); \draw[fill=white] (6.5,0) circle (0.3); \draw[fill=white] (6.5-0.75,-1) circle (0.3); \draw[fill=white] (6.5-0,-2) circle (0.3); \path[draw,thick,-] (9,0) -- (9+0.75,-1) -- (9-0,-2); \draw[fill=white] (9,0) circle (0.3); \draw[fill=white] (9+0.75,-1) circle (0.3); \draw[fill=white] (9-0,-2) circle (0.3); \path[draw,thick,-] (11.5,0) -- (11.5+0.75,-1) -- (11.5+1.5,-2); \draw[fill=white] (11.5,0) circle (0.3); \draw[fill=white] (11.5+0.75,-1) circle (0.3); \draw[fill=white] (11.5+1.5,-2) circle (0.3); \end{tikzpicture} \end{center} and the rooted trees are \begin{center} \begin{tikzpicture}[scale=0.7] \path[draw,thick,-] (0,0) -- (-1,-1); \path[draw,thick,-] (0,0) -- (0,-1); \path[draw,thick,-] (0,0) -- (1,-1); \draw[fill=white] (0,0) circle (0.3); \draw[fill=white] (-1,-1) circle (0.3); \draw[fill=white] (0,-1) circle (0.3); \draw[fill=white] (1,-1) circle (0.3); \path[draw,thick,-] (3,0) -- (3,-1) -- (3,-2) -- (3,-3); \draw[fill=white] (3,0) circle (0.3); \draw[fill=white] (3,-1) circle (0.3); \draw[fill=white] (3,-2) circle (0.3); \draw[fill=white] (3,-3) circle (0.3); \path[draw,thick,-] (6+0,0) -- (6-1,-1); \path[draw,thick,-] (6+0,0) -- (6+1,-1) -- (6+1,-2); \draw[fill=white] (6+0,0) circle (0.3); \draw[fill=white] (6-1,-1) circle (0.3); \draw[fill=white] (6+1,-1) circle (0.3); \draw[fill=white] (6+1,-2) circle (0.3); \path[draw,thick,-] (9+0,0) -- (9+1,-1); \path[draw,thick,-] (9+0,0) -- (9-1,-1) -- (9-1,-2); \draw[fill=white] (9+0,0) circle (0.3); \draw[fill=white] (9+1,-1) circle (0.3); \draw[fill=white] (9-1,-1) circle (0.3); \draw[fill=white] (9-1,-2) circle (0.3); \path[draw,thick,-] (12+0,0) -- (12+0,-1) -- (12-1,-2); \path[draw,thick,-] (12+0,0) -- (12+0,-1) -- (12+1,-2); \draw[fill=white] (12+0,0) circle (0.3); \draw[fill=white] (12+0,-1) circle (0.3); \draw[fill=white] (12-1,-2) circle (0.3); \draw[fill=white] (12+1,-2) circle (0.3); \end{tikzpicture} \end{center} \section{Inclusion-exclusion} \index{inclusion-exclusion} \key{Inclusion-exclusion} is a technique that can be used for counting the size of a union of sets when the sizes of the intersections are known, and vice versa. A simple example of the technique is the formula \[ |A \cup B| = |A| + |B| - |A \cap B|,\] where $A$ and $B$ are sets and $|X|$ is the size of a set $X$. The formula can be illustrated as follows: \begin{center} \begin{tikzpicture}[scale=0.8] \draw (0,0) circle (1.5); \draw (1.5,0) circle (1.5); \node at (-0.75,0) {\small $A$}; \node at (2.25,0) {\small $B$}; \node at (0.75,0) {\small $A \cap B$}; \end{tikzpicture} \end{center} In the above example, our goal is to calculate the size of the union $A \cup B$ that corresponds to the area of the region that is inside at least one circle. The picture shows that we can calculate the area of $A \cup B$ by first summing the areas of $A$ and $B$, and then subtracting the area of $A \cap B$. The same idea can be applied, when the number of sets is larger. When there are three sets, the formula becomes \[ |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \] and the corresponding picture is \begin{center} \begin{tikzpicture}[scale=0.8] \draw (0,0) circle (1.75); \draw (2,0) circle (1.75); \draw (1,1.5) circle (1.75); \node at (-0.75,-0.25) {\small $A$}; \node at (2.75,-0.25) {\small $B$}; \node at (1,2.5) {\small $C$}; \node at (1,-0.5) {\small $A \cap B$}; \node at (0,1.25) {\small $A \cap C$}; \node at (2,1.25) {\small $B \cap C$}; \node at (1,0.5) {\scriptsize $A \cap B \cap C$}; \end{tikzpicture} \end{center} In the general case, the size of the union $X_1 \cup X_2 \cup \cdots \cup X_n$ can be calculated by going through all ways to construct an intersection for a collection of sets $X_1,X_2,\ldots,X_n$. If the intersection contains an odd number of sets, its size will be added to the answer, and otherwise subtracted from the answer. Note that similar formulas also work when counting the size of an intersection from the sizes of unions. For example, \[ |A \cap B| = |A| + |B| - |A \cup B|\] and \[ |A \cap B \cap C| = |A| + |B| + |C| - |A \cup B| - |A \cup C| - |B \cup C| + |A \cup B \cup C| .\] \subsubsection{Derangements} \index{derangement} As an example, let's count the number of \key{derangements} of numbers $\{1,2,\ldots,n\}$, i.e., permutations where no element remains in its original place. For example, when $n=3$, there are two possible derangements: $(2,3,1)$ ja $(3,1,2)$. One approach for the problem is to use inclusion-exclusion. Let $X_k$ be the set of permutations that contain the number $k$ at index $k$. For example, when $n=3$, the sets are as follows: \[ \begin{array}{lcl} X_1 & = & \{(1,2,3),(1,3,2)\} \\ X_2 & = & \{(1,2,3),(3,2,1)\} \\ X_3 & = & \{(1,2,3),(2,1,3)\} \\ \end{array} \] Using these sets the number of derangements is \[ n! - |X_1 \cup X_2 \cup \cdots \cup X_n|, \] so it suffices to calculate the size of the union. Using inclusion-exclusion, this reduces to calculating sizes of intersections which can be done efficiently. For example, when $n=3$, the size of $|X_1 \cup X_2 \cup X_3|$ is \[ \begin{array}{lcl} & & |X_1| + |X_2| + |X_3| - |X_1 \cap X_2| - |X_1 \cap X_3| - |X_2 \cap X_3| + |X_1 \cap X_2 \cap X_3| \\ & = & 2+2+2-1-1-1+1 \\ & = & 4, \\ \end{array} \] so the number of solutions is $3!-4=2$. It turns out that there is also another way for solving the problem without inclusion-exclusion. Let $f(n)$ denote the number of derangements for $\{1,2,\ldots,n\}$. We can use the following recursive formula: \begin{equation*} f(n) = \begin{cases} 0 & n = 1\\ 1 & n = 2\\ (n-1)(f(n-2) + f(n-1)) & n>2 \\ \end{cases} \end{equation*} The formula can be derived by going through the possibilities how the number 1 changes in the derangement. There are $n-1$ ways to choose a number $x$ that will replace the number 1. In each such choice, there are two options: \textit{Option 1:} We also replace the number $x$ by the number 1. After this, the remaining task is to construct a derangement for $n-2$ numbers. \textit{Option 2:} We replace the number $x$ by some other number than 1. Now we should construct a derangement for $n-1$ numbers, because we can't replace the number $x$ with number $1$, and all other numbers should be changed. \section{Burnsiden lemma} \index{Burnsiden lemma@Burnsiden lemma} \key{Burnsiden lemma} laskee yhdistelmien määrän niin, että symmetrisistä yhdistelmistä lasketaan mukaan vain yksi edustaja. Burnsiden lemman mukaan yhdistelmien määrä on \[\sum_{k=1}^n \frac{c(k)}{n},\] missä yhdistelmän asentoa voi muuttaa $n$ tavalla ja $c(k)$ on niiden yhdistelmien määrä, jotka pysyvät ennallaan, kun asentoa muutetaan tavalla $k$. Lasketaan esimerkkinä, montako erilaista tapaa on muodostaa $n$ helmen helminauha, kun kunkin helmen värin tulee olla väliltä $1,2,\ldots,m$. Kaksi helminauhaa ovat symmetriset, jos ne voi saada näyttämään samalta pyörittämällä. Esimerkiksi helminauhan \begin{center} \begin{tikzpicture}[scale=0.7] \draw[fill=white] (0,0) circle (1); \draw[fill=red] (0,1) circle (0.3); \draw[fill=blue] (1,0) circle (0.3); \draw[fill=red] (0,-1) circle (0.3); \draw[fill=green] (-1,0) circle (0.3); \end{tikzpicture} \end{center} kanssa symmetriset helminauhat ovat seuraavat: \begin{center} \begin{tikzpicture}[scale=0.7] \draw[fill=white] (0,0) circle (1); \draw[fill=red] (0,1) circle (0.3); \draw[fill=blue] (1,0) circle (0.3); \draw[fill=red] (0,-1) circle (0.3); \draw[fill=green] (-1,0) circle (0.3); \draw[fill=white] (4,0) circle (1); \draw[fill=green] (4+0,1) circle (0.3); \draw[fill=red] (4+1,0) circle (0.3); \draw[fill=blue] (4+0,-1) circle (0.3); \draw[fill=red] (4+-1,0) circle (0.3); \draw[fill=white] (8,0) circle (1); \draw[fill=red] (8+0,1) circle (0.3); \draw[fill=green] (8+1,0) circle (0.3); \draw[fill=red] (8+0,-1) circle (0.3); \draw[fill=blue] (8+-1,0) circle (0.3); \draw[fill=white] (12,0) circle (1); \draw[fill=blue] (12+0,1) circle (0.3); \draw[fill=red] (12+1,0) circle (0.3); \draw[fill=green] (12+0,-1) circle (0.3); \draw[fill=red] (12+-1,0) circle (0.3); \end{tikzpicture} \end{center} Tapoja muuttaa asentoa on $n$, koska helminauhaa voi pyörittää $0,1,\ldots,n-1$ askelta myötäpäivään. Jos helminauhaa pyörittää 0 askelta, kaikki $m^n$ väritystä säilyvät ennallaan. Jos taas helminauhaa pyörittää 1 askeleen, vain $m$ yksiväristä helminauhaa säilyy ennallaan. Yleisemmin kun helminauhaa pyörittää $k$ askelta, ennallaan säilyvien yhdistelmien määrä on \[m^{\textrm{syt}(k,n)},\] missä $\textrm{syt}(k,n)$ on lukujen $k$ ja $n$ suurin yhteinen tekijä. Tämä johtuu siitä, että $\textrm{syt}(k,n)$-kokoiset pätkät helmiä siirtyvät toistensa paikoille $k$ askelta eteenpäin. Niinpä helminauhojen määrä on Burnsiden lemman mukaan \[\sum_{i=0}^{n-1} \frac{m^{\textrm{syt}(i,n)}}{n}. \] Esimerkiksi kun helminauhan pituus on 4 ja värejä on 3, helminauhoja on \[\frac{3^4+3+3^2+3}{4} = 24. \] \section{Cayleyn kaava} \index{Cayleyn kaava@Cayleyn kaava} \key{Cayleyn kaavan} mukaan $n$ solmusta voi muodostaa $n^{n-2}$ numeroitua puuta. Puun solmut on numeroitu $1,2,\ldots,n$, ja kaksi puuta ovat erilaiset, jos niiden rakenne on erilainen tai niissä on eri numerointi. \begin{samepage} \noindent Esimerkiksi kun $n=4$, numeroitujen puiden määrä on $4^{4-2}=16$: \begin{center} \begin{tikzpicture}[scale=0.8] \footnotesize \newcommand\puua[6]{ \path[draw,thick,-] (#1,#2) -- (#1-1.25,#2-1.5); \path[draw,thick,-] (#1,#2) -- (#1,#2-1.5); \path[draw,thick,-] (#1,#2) -- (#1+1.25,#2-1.5); \node[draw, circle, fill=white] at (#1,#2) {#3}; \node[draw, circle, fill=white] at (#1-1.25,#2-1.5) {#4}; \node[draw, circle, fill=white] at (#1,#2-1.5) {#5}; \node[draw, circle, fill=white] at (#1+1.25,#2-1.5) {#6}; } \newcommand\puub[6]{ \path[draw,thick,-] (#1,#2) -- (#1+1,#2); \path[draw,thick,-] (#1+1,#2) -- (#1+2,#2); \path[draw,thick,-] (#1+2,#2) -- (#1+3,#2); \node[draw, circle, fill=white] at (#1,#2) {#3}; \node[draw, circle, fill=white] at (#1+1,#2) {#4}; \node[draw, circle, fill=white] at (#1+2,#2) {#5}; \node[draw, circle, fill=white] at (#1+3,#2) {#6}; } \puua{0}{0}{1}{2}{3}{4} \puua{4}{0}{2}{1}{3}{4} \puua{8}{0}{3}{1}{2}{4} \puua{12}{0}{4}{1}{2}{3} \puub{0}{-3}{1}{2}{3}{4} \puub{4.5}{-3}{1}{2}{4}{3} \puub{9}{-3}{1}{3}{2}{4} \puub{0}{-4.5}{1}{3}{4}{2} \puub{4.5}{-4.5}{1}{4}{2}{3} \puub{9}{-4.5}{1}{4}{3}{2} \puub{0}{-6}{2}{1}{3}{4} \puub{4.5}{-6}{2}{1}{4}{3} \puub{9}{-6}{2}{3}{1}{4} \puub{0}{-7.5}{2}{4}{1}{3} \puub{4.5}{-7.5}{3}{1}{2}{4} \puub{9}{-7.5}{3}{2}{1}{4} \end{tikzpicture} \end{center} \end{samepage} Seuraavaksi näemme, miten Cayleyn kaavan voi perustella samastamalla numeroidut puut Prüfer-koodeihin. \subsubsection{Prüfer-koodi} \index{Prüfer-koodi} \key{Prüfer-koodi} on $n-2$ luvun jono, joka kuvaa numeroidun puun rakenteen. Koodi muodostuu poistamalla puusta joka askeleella lehden, jonka numero on pienin, ja lisäämällä lehden vieressä olevan solmun numeron koodiin. Esimerkiksi puun \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (2,3) {$1$}; \node[draw, circle] (2) at (4,3) {$2$}; \node[draw, circle] (3) at (2,1) {$3$}; \node[draw, circle] (4) at (4,1) {$4$}; \node[draw, circle] (5) at (5.5,2) {$5$}; %\path[draw,thick,-] (1) -- (2); %\path[draw,thick,-] (1) -- (3); \path[draw,thick,-] (1) -- (4); \path[draw,thick,-] (3) -- (4); \path[draw,thick,-] (2) -- (4); \path[draw,thick,-] (2) -- (5); %\path[draw,thick,-] (4) -- (5); \end{tikzpicture} \end{center} Prüfer-koodi on $[4,4,2]$, koska puusta poistetaan ensin solmu 1, sitten solmu 3 ja lopuksi solmu 5. Jokaiselle puulle voidaan laskea Prüfer-koodi, minkä lisäksi Prüfer-koodista pystyy palauttamaan yksikäsitteisesti alkuperäisen puun. Niinpä numeroituja puita on yhtä monta kuin Prüfer-koodeja eli $n^{n-2}$.