\chapter{Spanning trees} \index{spanning tree} A \key{spanning tree} is a set of edges of a graph such that there is a path between any two nodes in the graph using only the edges in the spanning tree. Like trees in general, a spanning tree is connected and acyclic. Usually, there are many ways to construct a spanning tree. For example, in the graph \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} one possible spanning tree is as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} The weight of a spanning tree is the sum of the edge weights. For example, the weight of the above spanning tree is $3+5+9+3+2=22$. \index{minimum spanning tree} A \key{minimum spanning tree} is a spanning tree whose weight is as small as possible. The weight of a minimum spanning tree for the above graph is 20, and a tree can be constructed as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \index{maximum spanning tree} Correspondingly, a \key{maximum spanning tree} is a spanning tree whose weight is as large as possible. The weight of a maximum spanning tree for the above graph is 32: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Note that there may be several different ways for constructing a minimum or maximum spanning tree, so the trees are not unique. This chapter discusses algorithms that construct a minimum or maximum spanning tree for a graph. It turns out that it is easy to find such spanning trees because many greedy methods produce an optimal solution. We will learn two algorithms that both construct the tree by choosing edges ordered by weights. We will focus on finding a minimum spanning tree, but the same algorithms can be used for finding a maximum spanning tree by processing the edges in reverse order. \section{Kruskal's algorithm} \index{Kruskal's algorithm} In \key{Kruskal's algorithm}, the initial spanning tree is empty and doesn't contain any edges. Then the algorithm adds edges to the tree one at a time in increasing order of their weights. At each step, the algorithm includes an edge in the tree if it doesn't create a cycle. Kruskal's algorithm maintains the components in the tree. Initially, each node of the graph is in its own component, and each edge added to the tree joins two components. Finally, all nodes will be in the same component, and a minimum spanning tree has been found. \subsubsection{Example} \begin{samepage} Let's consider how Kruskal's algorithm processes the following graph: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} \begin{samepage} The first step in the algorithm is to sort the edges in increasing order of their weights. The result is the following list: \begin{tabular}{ll} \\ edge & weight \\ \hline 5--6 & 2 \\ 1--2 & 3 \\ 3--6 & 3 \\ 1--5 & 5 \\ 2--3 & 5 \\ 2--5 & 6 \\ 4--6 & 7 \\ 3--4 & 9 \\ \\ \end{tabular} \end{samepage} After this, the algorithm goes through the list and adds an edge to the tree if it joins two separate components. Initially, each node is in its own component: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} The first edge to be added to the tree is edge 5--6 that joins components $\{5\}$ and $\{6\}$ into component $\{5,6\}$: \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} After this, edges 1--2, 3--6 and 1--5 are added in a similar way: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} After those steps, many components have been joined and there are two components in the tree: $\{1,2,3,5,6\}$ and $\{4\}$. The next edge in the list is edge 2--3, but it will not be included in the tree because nodes 2 and 3 are already in the same component. For the same reason, edge 2--5 will not be added to the tree. \begin{samepage} Finally, edge 4--6 will be included in the tree: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} After this, the algorithm terminates because there is a path between any two nodes and the graph is connected. The resulting graph is a minimum spanning tree with weight $2+3+3+5+7=20$. \subsubsection{Why does this work?} It's a good question why Kruskal's algorithm works. Why does the greedy strategy guarantee that we will find a minimum spanning tree? Let's see what happens if the lightest edge in the graph is not included in the minimum spanning tree. For example, assume that a minimum spanning tree for the above graph would not contain the edge between nodes 5 and 6 with weight 2. We don't know exactly how the new minimum spanning tree would look like, but still it has to contain some edges. Assume that the tree would be as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-,dashed] (1) -- (2); \path[draw,thick,-,dashed] (2) -- (5); \path[draw,thick,-,dashed] (2) -- (3); \path[draw,thick,-,dashed] (3) -- (4); \path[draw,thick,-,dashed] (4) -- (6); \end{tikzpicture} \end{center} However, it's not possible that the above tree would be a real minimum spanning tree for the graph. The reason for this is that we can remove an edge from it and replace it with the edge with weight 2. This produces a spanning tree whose weight is \emph{smaller}: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-,dashed] (1) -- (2); \path[draw,thick,-,dashed] (2) -- (5); \path[draw,thick,-,dashed] (3) -- (4); \path[draw,thick,-,dashed] (4) -- (6); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \end{tikzpicture} \end{center} For this reason, it is always optimal to include the lightest edge in the minimum spanning tree. Using a similar argument, we can show that we can also add the second lightest edge to the tree, and so on. Thus, Kruskal's algorithm works correctly and always produces a minimum spanning tree. \subsubsection{Implementation} Kruskal's algorithm can be conveniently implemented using an edge list. The first phase of the algorithm sorts the edges in $O(m \log m)$ time. After this, the second phase of the algorithm builds the minimum spanning tree. The second phase of the algorithm looks as follows: \begin{lstlisting} for (...) { if (!same(a,b)) union(a,b); } \end{lstlisting} The loop goes through the edges in the list and always processes an edge $a$--$b$ where $a$ and $b$ are two nodes. The code uses two functions: the function \texttt{same} determines if the nodes are in the same component, and the function \texttt{unite} joins two components into a single component. The problem is how to efficiently implement the functions \texttt{same} and \texttt{unite}. One possibility is to maintain the graph in a usual way and implement the function \texttt{same} as graph traversal. However, using this technique, the running time of the function \texttt{same} would be $O(n+m)$, and this would be slow because the function will be called for each edge in the graph. We will solve the problem using a union-find structure that implements both the functions in $O(\log n)$ time. Thus, the time complexity of Kruskal's algorithm will be only $O(m \log n)$ after sorting the edge list. \section{Union-find-rakenne} \index{union-find-rakenne} \key{Union-find-rakenne} pitää yllä alkiojoukkoja. Joukot ovat erillisiä, eli tietty alkio on tarkalleen yhdessä joukossa. Rakenne tarjoaa kaksi operaatiota, jotka toimivat ajassa $O(\log n)$. Ensimmäinen operaatio tarkistaa, ovatko kaksi alkiota samassa joukossa. Toinen operaatio yhdistää kaksi joukkoa toisiinsa. \subsubsection{Rakenne} Union-find-rakenteessa jokaisella joukolla on edustaja-alkio. Kaikki muut joukon alkiot osoittavat edustajaan joko suoraan tai muiden alkioiden kautta. Esimerkiksi jos joukot ovat $\{1,4,7\}$, $\{5\}$ ja $\{2,3,6,8\}$, tilanne voisi olla: \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (0,-1) {$1$}; \node[draw, circle] (2) at (7,0) {$2$}; \node[draw, circle] (3) at (7,-1.5) {$3$}; \node[draw, circle] (4) at (1,0) {$4$}; \node[draw, circle] (5) at (4,0) {$5$}; \node[draw, circle] (6) at (6,-2.5) {$6$}; \node[draw, circle] (7) at (2,-1) {$7$}; \node[draw, circle] (8) at (8,-2.5) {$8$}; \path[draw,thick,->] (1) -- (4); \path[draw,thick,->] (7) -- (4); \path[draw,thick,->] (3) -- (2); \path[draw,thick,->] (6) -- (3); \path[draw,thick,->] (8) -- (3); \end{tikzpicture} \end{center} Tässä tapauksessa alkiot 4, 5 ja 2 ovat joukkojen edustajat. Minkä tahansa alkion edustaja löytyy kulkemalla alkiosta lähtevää polkua eteenpäin niin kauan, kunnes polku päättyy. Esimerkiksi alkion 6 edustaja on 2, koska alkiosta 6 lähtevä polku on $6 \rightarrow 3 \rightarrow 2$. Tämän avulla voi selvittää, ovatko kaksi alkiota samassa joukossa: jos kummankin alkion edustaja on sama, alkiot ovat samassa joukossa, ja muuten ne ovat eri joukoissa. Kahden joukon yhdistäminen tapahtuu valitsemalla toinen edustaja joukkojen yhteiseksi edustajaksi ja kytkemällä toinen edustaja siihen. Esimerkiksi joukot $\{1,4,7\}$ ja $\{2,3,6,8\}$ voi yhdistää näin joukoksi $\{1,2,3,4,6,7,8\}$: \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (2,-1) {$1$}; \node[draw, circle] (2) at (7,0) {$2$}; \node[draw, circle] (3) at (7,-1.5) {$3$}; \node[draw, circle] (4) at (3,0) {$4$}; \node[draw, circle] (6) at (6,-2.5) {$6$}; \node[draw, circle] (7) at (4,-1) {$7$}; \node[draw, circle] (8) at (8,-2.5) {$8$}; \path[draw,thick,->] (1) -- (4); \path[draw,thick,->] (7) -- (4); \path[draw,thick,->] (3) -- (2); \path[draw,thick,->] (6) -- (3); \path[draw,thick,->] (8) -- (3); \path[draw,thick,->] (4) -- (2); \end{tikzpicture} \end{center} Joukkojen yhteiseksi edustajaksi valitaan alkio 2, minkä vuoksi alkio 4 yhdistetään siihen. Tästä lähtien alkio 2 edustaa kaikkia joukon alkioita. Tehokkuuden kannalta oleellista on, miten yhdistäminen tapahtuu. Osoittautuu, että ratkaisu on yksinkertainen: riittää yhdistää aina pienempi joukko suurempaan, tai kummin päin tahansa, jos joukot ovat yhtä suuret. Tällöin pisin ketju alkiosta edustajaan on aina luokkaa $O(\log n)$, koska jokainen askel eteenpäin ketjussa kaksinkertaistaa vastaavan joukon koon. \subsubsection{Toteutus} Union-find-rakenne on kätevää toteuttaa taulukoiden avulla. Seuraavassa toteutuksessa taulukko \texttt{k} viittaa seuraavaan alkioon ketjussa tai alkioon itseensä, jos alkio on edustaja. Taulukko \texttt{s} taas kertoo jokaiselle edustajalle, kuinka monta alkiota niiden joukossa on. Aluksi jokainen alkio on omassa joukossaan, jonka koko on 1: \begin{lstlisting} for (int i = 1; i <= n; i++) k[i] = i; for (int i = 1; i <= n; i++) s[i] = 1; \end{lstlisting} Funktio \texttt{id} kertoo alkion $x$ joukon edustajan. Alkion edustaja löytyy käymällä ketju läpi alkiosta $x$ alkaen. \begin{lstlisting} int id(int x) { while (x != k[x]) x = k[x]; return x; } \end{lstlisting} Funktio \texttt{sama} kertoo, ovatko alkiot $a$ ja $b$ samassa joukossa. Tämä onnistuu helposti funktion \texttt{id} avulla. \begin{lstlisting} bool sama(int a, int b) { return id(a) == id(b); } \end{lstlisting} \begin{samepage} Funktio \texttt{liita} yhdistää puolestaan alkioiden $a$ ja $b$ osoittamat joukot yhdeksi joukoksi. Funktio etsii ensin joukkojen edustajat ja yhdistää sitten pienemmän joukon suurempaan. \begin{lstlisting} void liita(int a, int b) { a = id(a); b = id(b); if (s[b] > s[a]) swap(a,b); s[a] += s[b]; k[b] = a; } \end{lstlisting} \end{samepage} Funktion \texttt{id} aikavaativuus on $O(\log n)$ olettaen, että ketjun pituus on luokkaa $O(\log n)$. Niinpä myös funktioiden \texttt{sama} ja \texttt{liita} aikavaativuus on $O(\log n)$. Funktio \texttt{liita} varmistaa, että ketjun pituus on luokkaa $O(\log n)$ yhdistämällä pienemmän joukon suurempaan. % Funktiota \texttt{id} on mahdollista vielä tehostaa % seuraavasti: % % \begin{lstlisting} % int id(int x) { % if (x == k[x]) return x; % return k[x] = id(x); % } % \end{lstlisting} % % Nyt joukon edustajan etsimisen yhteydessä kaikki ketjun % alkiot laitetaan osoittamaan suoraan edustajaan. % On mahdollista osoittaa, että tämän avulla % funktioiden \texttt{sama} ja \texttt{liita} % aikavaativuus on tasoitetusti % vain $O(\alpha(n))$, missä $\alpha(n)$ on % hyvin hitaasti kasvava käänteinen Ackermannin funktio. \section{Primin algoritmi} \index{Primin algoritmi@Primin algoritmi} \key{Primin algoritmi} on vaihtoehtoinen menetelmä verkon pienimmän virittävän puun muodostamiseen. Algoritmi aloittaa puun muodostamisen jostakin verkon solmusta ja lisää puuhun aina kaaren, joka on mahdollisimman kevyt ja joka liittää puuhun uuden solmun. Lopulta kaikki solmut on lisätty puuhun ja pienin virittävä puu on valmis. Primin algoritmin toiminta on lähellä Dijkstran algoritmia. Erona on, että Dijkstran algoritmissa valitaan kaari, jonka kautta syntyy lyhin polku alkusolmusta uuteen solmuun, mutta Primin algoritmissa valitaan vain kevein kaari, joka johtaa uuteen solmuun. \subsubsection{Esimerkki} Tarkastellaan Primin algoritmin toimintaa seuraavassa verkossa: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); %\path[draw=red,thick,-,line width=2pt] (5) -- (6); \end{tikzpicture} \end{center} Aluksi solmujen välillä ei ole mitään kaaria: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Puun muodostuksen voi aloittaa mistä tahansa solmusta, ja aloitetaan se nyt solmusta 1. Kevein kaari on painoltaan 3 ja se johtaa solmuun 2: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Nyt kevein uuteen solmuun johtavan kaaren paino on 5, ja voimme laajentaa joko solmuun 3 tai 5. Valitaan solmu 3: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \begin{samepage} Sama jatkuu, kunnes kaikki solmut ovat mukana puussa: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} \subsubsection{Toteutus} Dijkstran algoritmin tavoin Primin algoritmin voi toteuttaa tehokkaasti käyttämällä prioriteettijonoa. Primin algoritmin tapauksessa jono sisältää kaikki solmut, jotka voi yhdistää nykyiseen komponentiin kaarella, järjestyksessä kaaren painon mukaan kevyimmästä raskaimpaan. Primin algoritmin aikavaativuus on $O(n + m \log m)$ eli sama kuin Dijkstran algoritmissa. Käytännössä Primin algoritmi on suunnilleen yhtä nopea kuin Kruskalin algoritmi, ja onkin makuasia, kumpaa algoritmia käyttää. Useimmat kisakoodarit käyttävät kuitenkin Kruskalin algoritmia.