\chapter{Spanning trees} \index{spanning tree} A \key{spanning tree} is a set of edges of a graph such that there is a path between any two nodes in the graph using only the edges in the spanning tree. Like trees in general, a spanning tree is connected and acyclic. Usually, there are many ways to construct a spanning tree. For example, in the graph \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} one possible spanning tree is as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} The weight of a spanning tree is the sum of the edge weights. For example, the weight of the above spanning tree is $3+5+9+3+2=22$. \index{minimum spanning tree} A \key{minimum spanning tree} is a spanning tree whose weight is as small as possible. The weight of a minimum spanning tree for the above graph is 20, and a tree can be constructed as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \index{maximum spanning tree} Correspondingly, a \key{maximum spanning tree} is a spanning tree whose weight is as large as possible. The weight of a maximum spanning tree for the above graph is 32: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Note that there may be several different ways for constructing a minimum or maximum spanning tree, so the trees are not unique. This chapter discusses algorithms that construct a minimum or maximum spanning tree for a graph. It turns out that it is easy to find such spanning trees because many greedy methods produce an optimal solution. We will learn two algorithms that both construct the tree by choosing edges ordered by weights. We will focus on finding a minimum spanning tree, but the same algorithms can be used for finding a maximum spanning tree by processing the edges in reverse order. \section{Kruskal's algorithm} \index{Kruskal's algorithm} In \key{Kruskal's algorithm}, the initial spanning tree is empty and doesn't contain any edges. Then the algorithm adds edges to the tree one at a time in increasing order of their weights. At each step, the algorithm includes an edge in the tree if it doesn't create a cycle. Kruskal's algorithm maintains the components in the tree. Initially, each node of the graph is in its own component, and each edge added to the tree joins two components. Finally, all nodes will be in the same component, and a minimum spanning tree has been found. \subsubsection{Example} \begin{samepage} Let's consider how Kruskal's algorithm processes the following graph: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} \begin{samepage} The first step in the algorithm is to sort the edges in increasing order of their weights. The result is the following list: \begin{tabular}{ll} \\ edge & weight \\ \hline 5--6 & 2 \\ 1--2 & 3 \\ 3--6 & 3 \\ 1--5 & 5 \\ 2--3 & 5 \\ 2--5 & 6 \\ 4--6 & 7 \\ 3--4 & 9 \\ \\ \end{tabular} \end{samepage} After this, the algorithm goes through the list and adds an edge to the tree if it joins two separate components. Initially, each node is in its own component: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} The first edge to be added to the tree is edge 5--6 that joins components $\{5\}$ and $\{6\}$ into component $\{5,6\}$: \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} After this, edges 1--2, 3--6 and 1--5 are added in a similar way: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} After those steps, many components have been joined and there are two components in the tree: $\{1,2,3,5,6\}$ and $\{4\}$. The next edge in the list is edge 2--3, but it will not be included in the tree because nodes 2 and 3 are already in the same component. For the same reason, edge 2--5 will not be added to the tree. \begin{samepage} Finally, edge 4--6 will be included in the tree: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} After this, the algorithm terminates because there is a path between any two nodes and the graph is connected. The resulting graph is a minimum spanning tree with weight $2+3+3+5+7=20$. \subsubsection{Why does this work?} It's a good question why Kruskal's algorithm works. Why does the greedy strategy guarantee that we will find a minimum spanning tree? Let's see what happens if the lightest edge in the graph is not included in the minimum spanning tree. For example, assume that a minimum spanning tree for the above graph would not contain the edge between nodes 5 and 6 with weight 2. We don't know exactly how the new minimum spanning tree would look like, but still it has to contain some edges. Assume that the tree would be as follows: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-,dashed] (1) -- (2); \path[draw,thick,-,dashed] (2) -- (5); \path[draw,thick,-,dashed] (2) -- (3); \path[draw,thick,-,dashed] (3) -- (4); \path[draw,thick,-,dashed] (4) -- (6); \end{tikzpicture} \end{center} However, it's not possible that the above tree would be a real minimum spanning tree for the graph. The reason for this is that we can remove an edge from it and replace it with the edge with weight 2. This produces a spanning tree whose weight is \emph{smaller}: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-,dashed] (1) -- (2); \path[draw,thick,-,dashed] (2) -- (5); \path[draw,thick,-,dashed] (3) -- (4); \path[draw,thick,-,dashed] (4) -- (6); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \end{tikzpicture} \end{center} For this reason, it is always optimal to include the lightest edge in the minimum spanning tree. Using a similar argument, we can show that we can also add the second lightest edge to the tree, and so on. Thus, Kruskal's algorithm works correctly and always produces a minimum spanning tree. \subsubsection{Implementation} Kruskal's algorithm can be conveniently implemented using an edge list. The first phase of the algorithm sorts the edges in $O(m \log m)$ time. After this, the second phase of the algorithm builds the minimum spanning tree. The second phase of the algorithm looks as follows: \begin{lstlisting} for (...) { if (!same(a,b)) union(a,b); } \end{lstlisting} The loop goes through the edges in the list and always processes an edge $a$--$b$ where $a$ and $b$ are two nodes. The code uses two functions: the function \texttt{same} determines if the nodes are in the same component, and the function \texttt{unite} joins two components into a single component. The problem is how to efficiently implement the functions \texttt{same} and \texttt{unite}. One possibility is to maintain the graph in a usual way and implement the function \texttt{same} as graph traversal. However, using this technique, the running time of the function \texttt{same} would be $O(n+m)$, and this would be slow because the function will be called for each edge in the graph. We will solve the problem using a union-find structure that implements both the functions in $O(\log n)$ time. Thus, the time complexity of Kruskal's algorithm will be $O(m \log n)$ after sorting the edge list. \section{Union-find structure} \index{union-find structure} The \key{union-find structure} maintains a collection of sets. The sets are disjoint, so no element belongs to more than one set. Two $O(\log n)$ time operations are supported. The first operation checks if two elements belong to the same set, and the second operation joins two sets into a single set. \subsubsection{Structure} In the union-find structure, one element in each set is the representative of the set. All other elements in the set point to the representative directly or through other elements in the set. For example, in the following picture there are three sets: $\{1,4,7\}$, $\{5\}$ and $\{2,3,6,8\}$. \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (0,-1) {$1$}; \node[draw, circle] (2) at (7,0) {$2$}; \node[draw, circle] (3) at (7,-1.5) {$3$}; \node[draw, circle] (4) at (1,0) {$4$}; \node[draw, circle] (5) at (4,0) {$5$}; \node[draw, circle] (6) at (6,-2.5) {$6$}; \node[draw, circle] (7) at (2,-1) {$7$}; \node[draw, circle] (8) at (8,-2.5) {$8$}; \path[draw,thick,->] (1) -- (4); \path[draw,thick,->] (7) -- (4); \path[draw,thick,->] (3) -- (2); \path[draw,thick,->] (6) -- (3); \path[draw,thick,->] (8) -- (3); \end{tikzpicture} \end{center} In this case the representatives of the sets are 4, 5 and 2. For each element, we can find the representative for the corresponding set by following the path that begins at the element. For example, element 2 is the representative for the set that contains element 6 because the path is $6 \rightarrow 3 \rightarrow 2$. Thus, two elements belong to the same set exactly when they point to the same representative. Two sets can be combined by connecting the representative of one set to the representative of another set. For example, sets $\{1,4,7\}$ and $\{2,3,6,8\}$ can be combined as follows into set $\{1,2,3,4,6,7,8\}$: \begin{center} \begin{tikzpicture} \node[draw, circle] (1) at (2,-1) {$1$}; \node[draw, circle] (2) at (7,0) {$2$}; \node[draw, circle] (3) at (7,-1.5) {$3$}; \node[draw, circle] (4) at (3,0) {$4$}; \node[draw, circle] (6) at (6,-2.5) {$6$}; \node[draw, circle] (7) at (4,-1) {$7$}; \node[draw, circle] (8) at (8,-2.5) {$8$}; \path[draw,thick,->] (1) -- (4); \path[draw,thick,->] (7) -- (4); \path[draw,thick,->] (3) -- (2); \path[draw,thick,->] (6) -- (3); \path[draw,thick,->] (8) -- (3); \path[draw,thick,->] (4) -- (2); \end{tikzpicture} \end{center} In this case, element 2 becomes the representative for the whole set and the old representative 4 points to it. The efficiency of the operations depends on the way the sets are combined. It turns out that we can follow a simple strategy and always connect the representative of the smaller set to the representative of the larger set (or, if the sets are of the same size, both choices are fine). Using this strategy, the length of a path from a element in a set to a representative is always $O(\log n)$ because each step forward in the path doubles the size of the corresponding set. \subsubsection{Implementation} We can implement the union-find structure using arrays. In the following implementation, array \texttt{k} contains for each element the next element in the path, or the element itself if it is a representative, and array \texttt{s} indicates for each representative the size of the corresponding set. Initially, each element has an own set with size 1: \begin{lstlisting} for (int i = 1; i <= n; i++) k[i] = i; for (int i = 1; i <= n; i++) s[i] = 1; \end{lstlisting} The function \texttt{find} returns the representative for element $x$. The representative can be found by following the path that begins at element $x$. \begin{lstlisting} int find(int x) { while (x != k[x]) x = k[x]; return x; } \end{lstlisting} The function \texttt{same} finds out whether elements $a$ and $b$ belong to the same set. This can easily be done by using the function \texttt{find}. \begin{lstlisting} bool same(int a, int b) { return find(a) == find(b); } \end{lstlisting} \begin{samepage} The function \texttt{union} combines the sets that contain elements $a$ and $b$ into a single set. The function first finds the representatives of the sets and then connects the smaller set to the larger set. \begin{lstlisting} void union(int a, int b) { a = find(a); b = find(b); if (s[b] > s[a]) swap(a,b); s[a] += s[b]; k[b] = a; } \end{lstlisting} \end{samepage} The time complexity of the function \texttt{find} is $O(\log n)$ assuming that the length of the path is $O(\log n)$. Thus, the functions \texttt{same} and \texttt{union} also work in $O(\log n)$ time. The function \texttt{union} ensures that the length of each path is $O(\log n)$ by connecting the smaller set to the larger set. \section{Primin algoritmi} \index{Primin algoritmi@Primin algoritmi} \key{Primin algoritmi} on vaihtoehtoinen menetelmä verkon pienimmän virittävän puun muodostamiseen. Algoritmi aloittaa puun muodostamisen jostakin verkon solmusta ja lisää puuhun aina kaaren, joka on mahdollisimman kevyt ja joka liittää puuhun uuden solmun. Lopulta kaikki solmut on lisätty puuhun ja pienin virittävä puu on valmis. Primin algoritmin toiminta on lähellä Dijkstran algoritmia. Erona on, että Dijkstran algoritmissa valitaan kaari, jonka kautta syntyy lyhin polku alkusolmusta uuteen solmuun, mutta Primin algoritmissa valitaan vain kevein kaari, joka johtaa uuteen solmuun. \subsubsection{Esimerkki} Tarkastellaan Primin algoritmin toimintaa seuraavassa verkossa: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); \path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); \path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); \path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); %\path[draw=red,thick,-,line width=2pt] (5) -- (6); \end{tikzpicture} \end{center} Aluksi solmujen välillä ei ole mitään kaaria: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; %\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Puun muodostuksen voi aloittaa mistä tahansa solmusta, ja aloitetaan se nyt solmusta 1. Kevein kaari on painoltaan 3 ja se johtaa solmuun 2: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); %\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} Nyt kevein uuteen solmuun johtavan kaaren paino on 5, ja voimme laajentaa joko solmuun 3 tai 5. Valitaan solmu 3: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); %\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); %\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); %\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \begin{samepage} Sama jatkuu, kunnes kaikki solmut ovat mukana puussa: \begin{center} \begin{tikzpicture}[scale=0.9] \node[draw, circle] (1) at (1.5,2) {$1$}; \node[draw, circle] (2) at (3,3) {$2$}; \node[draw, circle] (3) at (5,3) {$3$}; \node[draw, circle] (4) at (6.5,2) {$4$}; \node[draw, circle] (5) at (3,1) {$5$}; \node[draw, circle] (6) at (5,1) {$6$}; \path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2); \path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3); %\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4); %\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5); \path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6); \path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4); %\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5); \path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6); \end{tikzpicture} \end{center} \end{samepage} \subsubsection{Toteutus} Dijkstran algoritmin tavoin Primin algoritmin voi toteuttaa tehokkaasti käyttämällä prioriteettijonoa. Primin algoritmin tapauksessa jono sisältää kaikki solmut, jotka voi yhdistää nykyiseen komponentiin kaarella, järjestyksessä kaaren painon mukaan kevyimmästä raskaimpaan. Primin algoritmin aikavaativuus on $O(n + m \log m)$ eli sama kuin Dijkstran algoritmissa. Käytännössä Primin algoritmi on suunnilleen yhtä nopea kuin Kruskalin algoritmi, ja onkin makuasia, kumpaa algoritmia käyttää. Useimmat kisakoodarit käyttävät kuitenkin Kruskalin algoritmia.