402 lines
13 KiB
Plaintext
402 lines
13 KiB
Plaintext
\begin{theindex}
|
||
|
||
\item 2SAT problem, \hyperpage{160}
|
||
\item 2SUM problem, \hyperpage{78}
|
||
\item 3SAT problem, \hyperpage{162}
|
||
\item 3SUM problem, \hyperpage{79}
|
||
|
||
\indexspace
|
||
|
||
\item adjacency list, \hyperpage{113}
|
||
\item adjacency matrix, \hyperpage{114}
|
||
\item alphabet, \hyperpage{243}
|
||
\item amortized analysis, \hyperpage{77}
|
||
\item ancestor, \hyperpage{163}
|
||
\item and operation, \hyperpage{96}
|
||
\item Andrew's algorithm, \hyperpage{279}
|
||
\item antichain, \hyperpage{193}
|
||
\item arithmetic progression, \hyperpage{10}
|
||
|
||
\indexspace
|
||
|
||
\item backtracking, \hyperpage{50}
|
||
\item Bellman–Ford algorithm, \hyperpage{123}
|
||
\item binary code, \hyperpage{62}
|
||
\item binary indexed tree, \hyperpage{86}
|
||
\item binary search, \hyperpage{31}
|
||
\item binary tree, \hyperpage{139}
|
||
\item Binet's formula, \hyperpage{14}
|
||
\item binomial coefficient, \hyperpage{208}
|
||
\item binomial distribution, \hyperpage{230}
|
||
\item bipartite graph, \hyperpage{112}, \hyperpage{122}
|
||
\item birthday paradox, \hyperpage{247}
|
||
\item bit representation, \hyperpage{95}
|
||
\item bit shift, \hyperpage{97}
|
||
\item bitset, \hyperpage{41}
|
||
\item border, \hyperpage{244}
|
||
\item breadth-first search, \hyperpage{119}
|
||
\item bubble sort, \hyperpage{25}
|
||
\item Burnside's lemma, \hyperpage{214}
|
||
|
||
\indexspace
|
||
|
||
\item Catalan number, \hyperpage{210}
|
||
\item Cayley's formula, \hyperpage{215}
|
||
\item child, \hyperpage{133}
|
||
\item Chinese remainder theorem, \hyperpage{205}
|
||
\item closest pair, \hyperpage{277}
|
||
\item codeword, \hyperpage{62}
|
||
\item cofactor, \hyperpage{219}
|
||
\item collision, \hyperpage{246}
|
||
\item coloring, \hyperpage{112}, \hyperpage{233}
|
||
\item combinatorics, \hyperpage{207}
|
||
\item comparison function, \hyperpage{31}
|
||
\item comparison operator, \hyperpage{30}
|
||
\item complement, \hyperpage{12}
|
||
\item complete graph, \hyperpage{111}
|
||
\item \texttt{complex}, \hyperpage{266}
|
||
\item complex number, \hyperpage{266}
|
||
\item complexity classes, \hyperpage{20}
|
||
\item component, \hyperpage{110}
|
||
\item component graph, \hyperpage{157}
|
||
\item conditional probability, \hyperpage{227}
|
||
\item conjuction, \hyperpage{13}
|
||
\item connected graph, \hyperpage{110}, \hyperpage{121}
|
||
\item constant factor, \hyperpage{21}
|
||
\item constant-time algorithm, \hyperpage{20}
|
||
\item coprime, \hyperpage{201}
|
||
\item counting sort, \hyperpage{28}
|
||
\item cross product, \hyperpage{268}
|
||
\item cubic algorithm, \hyperpage{20}
|
||
\item cut, \hyperpage{182}
|
||
\item cycle, \hyperpage{109}, \hyperpage{121}, \hyperpage{149},
|
||
\hyperpage{155}
|
||
\item cycle detection, \hyperpage{155}
|
||
|
||
\indexspace
|
||
|
||
\item data compression, \hyperpage{62}
|
||
\item data structure, \hyperpage{35}
|
||
\item De Bruijn sequence, \hyperpage{178}
|
||
\item degree, \hyperpage{111}
|
||
\item depth-first search, \hyperpage{117}
|
||
\item deque, \hyperpage{42}
|
||
\item derangement, \hyperpage{213}
|
||
\item determinant, \hyperpage{219}
|
||
\item diameter, \hyperpage{135}
|
||
\item difference, \hyperpage{12}
|
||
\item difference array, \hyperpage{93}
|
||
\item Dijkstra's algorithm, \hyperpage{126}, \hyperpage{153}
|
||
\item Dilworth's theorem, \hyperpage{193}
|
||
\item Diophantine equation, \hyperpage{204}
|
||
\item Dirac's theorem, \hyperpage{177}
|
||
\item directed graph, \hyperpage{110}
|
||
\item disjunction, \hyperpage{13}
|
||
\item distance function, \hyperpage{272}
|
||
\item distribution, \hyperpage{229}
|
||
\item divisibility, \hyperpage{197}
|
||
\item divisor, \hyperpage{197}
|
||
\item dynamic array, \hyperpage{35}
|
||
\item dynamic programming, \hyperpage{65}
|
||
\item dynamic segment tree, \hyperpage{261}
|
||
|
||
\indexspace
|
||
|
||
\item edge, \hyperpage{109}
|
||
\item edge list, \hyperpage{115}
|
||
\item edit distance, \hyperpage{74}
|
||
\item Edmonds–Karp algorithm, \hyperpage{184}
|
||
\item equivalence, \hyperpage{13}
|
||
\item Euclid's algorithm, \hyperpage{200}
|
||
\item Euclid's formula, \hyperpage{206}
|
||
\item Euclidean distance, \hyperpage{272}
|
||
\item Euler tour technique, \hyperpage{168}
|
||
\item Euler's theorem, \hyperpage{202}
|
||
\item Euler's totient function, \hyperpage{201}
|
||
\item Eulerian circuit, \hyperpage{174}
|
||
\item Eulerian path, \hyperpage{173}
|
||
\item expected value, \hyperpage{229}
|
||
\item extended Euclid's algorithm, \hyperpage{204}
|
||
|
||
\indexspace
|
||
|
||
\item factor, \hyperpage{197}
|
||
\item factorial, \hyperpage{14}
|
||
\item Faulhaber's formula, \hyperpage{10}
|
||
\item Fenwick tree, \hyperpage{86}
|
||
\item Fermat's theorem, \hyperpage{202}
|
||
\item Fibonacci number, \hyperpage{14}, \hyperpage{206},
|
||
\hyperpage{220}
|
||
\item floating point number, \hyperpage{7}
|
||
\item flow, \hyperpage{181}
|
||
\item Floyd's algorithm, \hyperpage{156}
|
||
\item Floyd–Warshall algorithm, \hyperpage{129}
|
||
\item Ford–Fulkerson algorithm, \hyperpage{182}
|
||
\item Freivalds' algoritm, \hyperpage{232}
|
||
\item functional graph, \hyperpage{154}
|
||
|
||
\indexspace
|
||
|
||
\item geometric distribution, \hyperpage{230}
|
||
\item geometric progression, \hyperpage{11}
|
||
\item geometry, \hyperpage{265}
|
||
\item Goldbach's conjecture, \hyperpage{199}
|
||
\item graph, \hyperpage{109}
|
||
\item greatest common divisor, \hyperpage{200}
|
||
\item greedy algorithm, \hyperpage{57}
|
||
\item Grundy number, \hyperpage{238}
|
||
\item Grundy's game, \hyperpage{241}
|
||
|
||
\indexspace
|
||
|
||
\item Hall's theorem, \hyperpage{189}
|
||
\item Hamiltonian circuit, \hyperpage{177}
|
||
\item Hamiltonian path, \hyperpage{177}
|
||
\item Hamming distance, \hyperpage{100}
|
||
\item harmonic sum, \hyperpage{11}, \hyperpage{200}
|
||
\item hash value, \hyperpage{245}
|
||
\item hashing, \hyperpage{245}
|
||
\item heap, \hyperpage{43}
|
||
\item Heron's formula, \hyperpage{265}
|
||
\item heuristic, \hyperpage{179}
|
||
\item Hierholzer's algorithm, \hyperpage{175}
|
||
\item Huffman coding, \hyperpage{63}
|
||
|
||
\indexspace
|
||
|
||
\item identity matrix, \hyperpage{218}
|
||
\item implication, \hyperpage{13}
|
||
\item in-order, \hyperpage{139}
|
||
\item inclusion-exclusion, \hyperpage{212}
|
||
\item indegree, \hyperpage{111}
|
||
\item independence, \hyperpage{228}
|
||
\item independent set, \hyperpage{190}
|
||
\item index compression, \hyperpage{93}
|
||
\item input and output, \hyperpage{4}
|
||
\item integer, \hyperpage{6}
|
||
\item intersection, \hyperpage{12}
|
||
\item intersection point, \hyperpage{276}
|
||
\item inverse matrix, \hyperpage{220}
|
||
\item inversion, \hyperpage{26}
|
||
\item iterator, \hyperpage{39}
|
||
|
||
\indexspace
|
||
|
||
\item Kadane's algorithm, \hyperpage{23}
|
||
\item Kirchhoff's theorem, \hyperpage{223}
|
||
\item knapsack, \hyperpage{72}
|
||
\item knight's tour, \hyperpage{179}
|
||
\item Kosaraju's algorithm, \hyperpage{158}
|
||
\item Kruskal's algorithm, \hyperpage{142}
|
||
\item Kőnig's theorem, \hyperpage{189}
|
||
|
||
\indexspace
|
||
|
||
\item Lagrange's theorem, \hyperpage{205}
|
||
\item Laplacean matrix, \hyperpage{224}
|
||
\item Las Vegas algorithm, \hyperpage{231}
|
||
\item lazy propagation, \hyperpage{258}
|
||
\item lazy segment tree, \hyperpage{258}
|
||
\item leaf, \hyperpage{133}
|
||
\item least common multiple, \hyperpage{200}
|
||
\item Legendre's conjecture, \hyperpage{199}
|
||
\item Levenshtein distance, \hyperpage{74}
|
||
\item lexicographical order, \hyperpage{244}
|
||
\item line segment intersection, \hyperpage{269}
|
||
\item linear algorithm, \hyperpage{20}
|
||
\item linear recurrence, \hyperpage{220}
|
||
\item logarithm, \hyperpage{14}
|
||
\item logarithmic algorithm, \hyperpage{20}
|
||
\item logic, \hyperpage{13}
|
||
\item longest increasing subsequence, \hyperpage{70}
|
||
\item losing state, \hyperpage{235}
|
||
\item lowest common ancestor, \hyperpage{167}
|
||
|
||
\indexspace
|
||
|
||
\item macro, \hyperpage{9}
|
||
\item Manhattan distance, \hyperpage{272}
|
||
\item map, \hyperpage{38}
|
||
\item Markov chain, \hyperpage{230}
|
||
\item matching, \hyperpage{187}
|
||
\item matrix, \hyperpage{217}
|
||
\item matrix multiplication, \hyperpage{218}, \hyperpage{232}
|
||
\item matrix power, \hyperpage{219}
|
||
\item maximum flow, \hyperpage{181}
|
||
\item maximum independent set, \hyperpage{190}
|
||
\item maximum matching, \hyperpage{187}
|
||
\item maximum query, \hyperpage{83}
|
||
\item maximum spanning tree, \hyperpage{142}
|
||
\item maximum subarray sum, \hyperpage{21}
|
||
\item meet in the middle, \hyperpage{54}
|
||
\item memoization, \hyperpage{67}
|
||
\item merge sort, \hyperpage{27}
|
||
\item mex function, \hyperpage{238}
|
||
\item minimum cut, \hyperpage{182}, \hyperpage{185}
|
||
\item minimum node cover, \hyperpage{189}
|
||
\item minimum query, \hyperpage{83}
|
||
\item minimum spanning tree, \hyperpage{141}
|
||
\item misère game, \hyperpage{238}
|
||
\item Mo's algorithm, \hyperpage{255}
|
||
\item modular arithmetic, \hyperpage{6}, \hyperpage{201}
|
||
\item modular inverse, \hyperpage{202}
|
||
\item Monte Carlo algorithm, \hyperpage{231}
|
||
\item multinomial coefficient, \hyperpage{210}
|
||
|
||
\indexspace
|
||
|
||
\item natural logarithm, \hyperpage{15}
|
||
\item nearest smaller elements, \hyperpage{79}
|
||
\item negation, \hyperpage{13}
|
||
\item negative cycle, \hyperpage{125}
|
||
\item neighbor, \hyperpage{111}
|
||
\item \texttt{next\_permutation}, \hyperpage{49}
|
||
\item nim game, \hyperpage{237}
|
||
\item nim sum, \hyperpage{237}
|
||
\item node, \hyperpage{109}
|
||
\item node cover, \hyperpage{189}
|
||
\item not operation, \hyperpage{97}
|
||
\item NP-hard problem, \hyperpage{20}
|
||
\item number theory, \hyperpage{197}
|
||
|
||
\indexspace
|
||
|
||
\item or operation, \hyperpage{96}
|
||
\item order statistic, \hyperpage{232}
|
||
\item Ore's theorem, \hyperpage{177}
|
||
\item outdegree, \hyperpage{111}
|
||
|
||
\indexspace
|
||
|
||
\item \texttt{pair}, \hyperpage{30}
|
||
\item parent, \hyperpage{133}
|
||
\item parenthesis expression, \hyperpage{211}
|
||
\item Pascal's triangle, \hyperpage{209}
|
||
\item path, \hyperpage{109}
|
||
\item path cover, \hyperpage{190}
|
||
\item pattern matching, \hyperpage{243}
|
||
\item perfect matching, \hyperpage{189}
|
||
\item perfect number, \hyperpage{198}
|
||
\item period, \hyperpage{243}
|
||
\item permutation, \hyperpage{49}
|
||
\item persistent segment tree, \hyperpage{262}
|
||
\item Pick's theorem, \hyperpage{272}
|
||
\item point, \hyperpage{266}
|
||
\item polynomial algorithm, \hyperpage{20}
|
||
\item polynomial hashing, \hyperpage{245}
|
||
\item post-order, \hyperpage{139}
|
||
\item pre-order, \hyperpage{139}
|
||
\item predicate, \hyperpage{13}
|
||
\item prefix, \hyperpage{243}
|
||
\item prefix sum array, \hyperpage{84}
|
||
\item Prim's algorithm, \hyperpage{147}
|
||
\item prime, \hyperpage{197}
|
||
\item prime decomposition, \hyperpage{197}
|
||
\item priority queue, \hyperpage{43}
|
||
\item probability, \hyperpage{225}
|
||
\item programming language, \hyperpage{3}
|
||
\item Prüfer code, \hyperpage{216}
|
||
\item Pythagorean triple, \hyperpage{206}
|
||
|
||
\indexspace
|
||
|
||
\item quadratic algorithm, \hyperpage{20}
|
||
\item quantifier, \hyperpage{13}
|
||
\item queen problem, \hyperpage{50}
|
||
\item queue, \hyperpage{43}
|
||
\item quickselect, \hyperpage{232}
|
||
\item quicksort, \hyperpage{232}
|
||
|
||
\indexspace
|
||
|
||
\item random variable, \hyperpage{228}
|
||
\item \texttt{random\_shuffle}, \hyperpage{39}
|
||
\item randomized algorithm, \hyperpage{231}
|
||
\item range query, \hyperpage{83}
|
||
\item regular graph, \hyperpage{111}
|
||
\item remainder, \hyperpage{6}
|
||
\item \texttt{reverse}, \hyperpage{39}
|
||
\item root, \hyperpage{133}
|
||
\item rooted tree, \hyperpage{133}
|
||
\item rotation, \hyperpage{243}
|
||
|
||
\indexspace
|
||
|
||
\item scaling algorithm, \hyperpage{185}
|
||
\item segment tree, \hyperpage{89}, \hyperpage{257}
|
||
\item set, \hyperpage{12}, \hyperpage{37}
|
||
\item set theory, \hyperpage{12}
|
||
\item shoelace formula, \hyperpage{271}
|
||
\item shortest path, \hyperpage{123}
|
||
\item sieve of Eratosthenes, \hyperpage{200}
|
||
\item simple graph, \hyperpage{112}
|
||
\item sliding window, \hyperpage{81}
|
||
\item sliding window minimum, \hyperpage{81}
|
||
\item \texttt{sort}, \hyperpage{29}, \hyperpage{39}
|
||
\item sorting, \hyperpage{25}
|
||
\item spanning tree, \hyperpage{141}, \hyperpage{223}
|
||
\item sparse segment tree, \hyperpage{261}
|
||
\item sparse table, \hyperpage{85}
|
||
\item SPFA algorithm, \hyperpage{126}
|
||
\item Sprague–Grundy theorem, \hyperpage{238}
|
||
\item square matrix, \hyperpage{217}
|
||
\item square root algorithm, \hyperpage{251}
|
||
\item stack, \hyperpage{42}
|
||
\item string, \hyperpage{36}, \hyperpage{243}
|
||
\item string hashing, \hyperpage{245}
|
||
\item strongly connected component, \hyperpage{157}
|
||
\item strongly connected graph, \hyperpage{157}
|
||
\item subsequence, \hyperpage{243}
|
||
\item subset, \hyperpage{12}, \hyperpage{47}
|
||
\item substring, \hyperpage{243}
|
||
\item subtree, \hyperpage{133}
|
||
\item successor graph, \hyperpage{154}
|
||
\item suffix, \hyperpage{243}
|
||
\item sum query, \hyperpage{83}
|
||
\item sweep line, \hyperpage{275}
|
||
|
||
\indexspace
|
||
|
||
\item time complexity, \hyperpage{17}
|
||
\item topological sorting, \hyperpage{149}
|
||
\item transpose, \hyperpage{217}
|
||
\item tree, \hyperpage{110}, \hyperpage{133}
|
||
\item tree query, \hyperpage{163}
|
||
\item tree traversal array, \hyperpage{164}
|
||
\item trie, \hyperpage{244}
|
||
\item \texttt{tuple}, \hyperpage{30}
|
||
\item \texttt{typedef}, \hyperpage{8}
|
||
\item twin prime, \hyperpage{199}
|
||
\item two pointers method, \hyperpage{77}
|
||
\item two-dimensional segment tree, \hyperpage{264}
|
||
|
||
\indexspace
|
||
|
||
\item uniform distribution, \hyperpage{230}
|
||
\item union, \hyperpage{12}
|
||
\item union-find structure, \hyperpage{145}
|
||
\item universal set, \hyperpage{12}
|
||
|
||
\indexspace
|
||
|
||
\item vector, \hyperpage{35}, \hyperpage{217}, \hyperpage{266}
|
||
|
||
\indexspace
|
||
|
||
\item Warnsdorf's rule, \hyperpage{179}
|
||
\item weighted graph, \hyperpage{111}
|
||
\item Wilson's theorem, \hyperpage{206}
|
||
\item winning state, \hyperpage{235}
|
||
|
||
\indexspace
|
||
|
||
\item xor operation, \hyperpage{97}
|
||
|
||
\indexspace
|
||
|
||
\item Z-algorithm, \hyperpage{247}
|
||
\item Z-array, \hyperpage{247}
|
||
\item Zeckendorf's theorem, \hyperpage{206}
|
||
|
||
\end{theindex}
|