774 lines
21 KiB
TeX
774 lines
21 KiB
TeX
\chapter{Data structures}
|
||
|
||
\index{data structure}
|
||
|
||
A \key{data structure} is a way to store
|
||
data in the memory of the computer.
|
||
It is important to choose a suitable
|
||
data structure for a problem,
|
||
because each data structure has its own
|
||
advantages and disadvantages.
|
||
The crucial question is: which operations
|
||
are efficient in the chosen data structure?
|
||
|
||
This chapter introduces the most important
|
||
data structures in the C++ standard library.
|
||
It is a good idea to use the standard library
|
||
whenever possible,
|
||
because it will save a lot of time.
|
||
Later in the book we will learn more sophisticated
|
||
data structures that are not available
|
||
in the standard library.
|
||
|
||
\section{Dynamic array}
|
||
|
||
\index{dynamic array}
|
||
\index{vector}
|
||
\index{vector@\texttt{vector}}
|
||
|
||
A \key{dynamic array} is an array whose
|
||
size can be changed during the execution
|
||
of the code.
|
||
The most popular dynamic array in C++ is
|
||
the \key{vector} structure (\texttt{vector}),
|
||
that can be used almost like a regular array.
|
||
|
||
The following code creates an empty vector and
|
||
adds three elements to it:
|
||
|
||
\begin{lstlisting}
|
||
vector<int> v;
|
||
v.push_back(3); // [3]
|
||
v.push_back(2); // [3,2]
|
||
v.push_back(5); // [3,2,5]
|
||
\end{lstlisting}
|
||
|
||
After this, the elements can be accessed like in a regular array:
|
||
|
||
\begin{lstlisting}
|
||
cout << v[0] << "\n"; // 3
|
||
cout << v[1] << "\n"; // 2
|
||
cout << v[2] << "\n"; // 5
|
||
\end{lstlisting}
|
||
|
||
The function \texttt{size} returns the number of elements in the vector.
|
||
The following code iterates through
|
||
the vector and prints all elements in it:
|
||
|
||
\begin{lstlisting}
|
||
for (int i = 0; i < v.size(); i++) {
|
||
cout << v[i] << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
|
||
\begin{samepage}
|
||
A shorter way to iterate trough a vector is as follows:
|
||
|
||
\begin{lstlisting}
|
||
for (auto x : v) {
|
||
cout << x << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
\end{samepage}
|
||
|
||
The function \texttt{back} returns the last element
|
||
in the vector, and
|
||
the function \texttt{pop\_back} removes the last element:
|
||
|
||
\begin{lstlisting}
|
||
vector<int> v;
|
||
v.push_back(5);
|
||
v.push_back(2);
|
||
cout << v.back() << "\n"; // 2
|
||
v.pop_back();
|
||
cout << v.back() << "\n"; // 5
|
||
\end{lstlisting}
|
||
|
||
The following code creates a vector with five elements:
|
||
|
||
\begin{lstlisting}
|
||
vector<int> v = {2,4,2,5,1};
|
||
\end{lstlisting}
|
||
|
||
Another way to create a vector is to give the number
|
||
of elements and the initial value for each element:
|
||
|
||
\begin{lstlisting}
|
||
// size 10, initial value 0
|
||
vector<int> v(10);
|
||
\end{lstlisting}
|
||
\begin{lstlisting}
|
||
// size 10, initial value 5
|
||
vector<int> v(10, 5);
|
||
\end{lstlisting}
|
||
|
||
The internal implementation of the vector
|
||
uses a regular array.
|
||
If the size of the vector increases and
|
||
the array becomes too small,
|
||
a new array is allocated and all the
|
||
elements are copied to the new array.
|
||
However, this doesn't happen often and the
|
||
time complexity of
|
||
\texttt{push\_back} is $O(1)$ on average.
|
||
|
||
\index{string}
|
||
\index{string@\texttt{string}}
|
||
|
||
Also the \key{string} structure (\texttt{string})
|
||
is a dynamic array that can be used almost like a vector.
|
||
In addition, there is special syntax for strings
|
||
that is not available in other data structures.
|
||
Strings can be combined using the \texttt{+} symbol.
|
||
The function $\texttt{substr}(k,x)$ returns the substring
|
||
that begins at index $k$ and has length $x$.
|
||
The function $\texttt{find}(\texttt{t})$ finds the position
|
||
where a substring \texttt{t} appears in the string.
|
||
|
||
The following code presents some string operations:
|
||
|
||
\begin{lstlisting}
|
||
string a = "hatti";
|
||
string b = a+a;
|
||
cout << b << "\n"; // hattihatti
|
||
b[5] = 'v';
|
||
cout << b << "\n"; // hattivatti
|
||
string c = b.substr(3,4);
|
||
cout << c << "\n"; // tiva
|
||
\end{lstlisting}
|
||
|
||
\section{Set structure}
|
||
|
||
\index{set}
|
||
\index{set@\texttt{set}}
|
||
\index{unordered\_set@\texttt{unordered\_set}}
|
||
|
||
A \key{set} is a data structure that
|
||
contains a collection of elements.
|
||
The basic operations in a set are element
|
||
insertion, search and removal.
|
||
|
||
C++ contains two set implementations:
|
||
\texttt{set} and \texttt{unordered\_set}.
|
||
The structure \texttt{set} is based on a balanced
|
||
binary tree and the time complexity of its
|
||
operations is $O(\log n)$.
|
||
The structure \texttt{unordered\_set} uses a hash table,
|
||
and the time complexity of its operations is $O(1)$ on average.
|
||
|
||
The choice which set implementation to use
|
||
is often a matter of taste.
|
||
The benefit in the \texttt{set} structure
|
||
is that it maintains the order of the elements
|
||
and provides functions that are not available
|
||
in \texttt{unordered\_set}.
|
||
On the other hand, \texttt{unordered\_set} is
|
||
often more efficient.
|
||
|
||
The following code creates a set
|
||
that consists of integers,
|
||
and shows how to use it.
|
||
The function \texttt{insert} adds an element to the set,
|
||
the function \texttt{count} returns how many times an
|
||
element appears in the set,
|
||
and the function \texttt{erase} removes an element from the set.
|
||
|
||
\begin{lstlisting}
|
||
set<int> s;
|
||
s.insert(3);
|
||
s.insert(2);
|
||
s.insert(5);
|
||
cout << s.count(3) << "\n"; // 1
|
||
cout << s.count(4) << "\n"; // 0
|
||
s.erase(3);
|
||
s.insert(4);
|
||
cout << s.count(3) << "\n"; // 0
|
||
cout << s.count(4) << "\n"; // 1
|
||
\end{lstlisting}
|
||
|
||
A set can be used mostly like a vector,
|
||
but it is not possible to access
|
||
the elements using the \texttt{[]} notation.
|
||
The following code creates a set,
|
||
prints the number of elements in it, and then
|
||
iterates through all the elements:
|
||
\begin{lstlisting}
|
||
set<int> s = {2,5,6,8};
|
||
cout << s.size() << "\n"; // 4
|
||
for (auto x : s) {
|
||
cout << x << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
|
||
An important property of a set is
|
||
that all the elements are distinct.
|
||
Thus, the function \texttt{count} always returns
|
||
either 0 (the element is not in the set)
|
||
or 1 (the element is in the set),
|
||
and the function \texttt{insert} never adds
|
||
an element to the set if it is
|
||
already in the set.
|
||
The following code illustrates this:
|
||
|
||
\begin{lstlisting}
|
||
set<int> s;
|
||
s.insert(5);
|
||
s.insert(5);
|
||
s.insert(5);
|
||
cout << s.count(5) << "\n"; // 1
|
||
\end{lstlisting}
|
||
|
||
\index{multiset@\texttt{multiset}}
|
||
\index{unordered\_multiset@\texttt{unordered\_multiset}}
|
||
|
||
C++ also contains the structures
|
||
\texttt{multiset} and \texttt{unordered\_multiset}
|
||
that work otherwise like \texttt{set}
|
||
and \texttt{unordered\_set}
|
||
but they can contain multiple copies of an element.
|
||
For example, in the following code all copies
|
||
of the number 5 are added to the set:
|
||
|
||
\begin{lstlisting}
|
||
multiset<int> s;
|
||
s.insert(5);
|
||
s.insert(5);
|
||
s.insert(5);
|
||
cout << s.count(5) << "\n"; // 3
|
||
\end{lstlisting}
|
||
The function \texttt{erase} removes
|
||
all instances of an element
|
||
from a \texttt{multiset}:
|
||
\begin{lstlisting}
|
||
s.erase(5);
|
||
cout << s.count(5) << "\n"; // 0
|
||
\end{lstlisting}
|
||
Often, only one instance should be removed,
|
||
which can be done as follows:
|
||
\begin{lstlisting}
|
||
s.erase(s.find(5));
|
||
cout << s.count(5) << "\n"; // 2
|
||
\end{lstlisting}
|
||
|
||
\section{Map structure}
|
||
|
||
\index{hakemisto@hakemisto}
|
||
\index{map@\texttt{map}}
|
||
\index{unordered\_map@\texttt{unordered\_map}}
|
||
|
||
A \key{map} is a generalized array
|
||
that consists of key-value-pairs.
|
||
While the keys in a regular array are always
|
||
the successive integers $0,1,\ldots,n-1$,
|
||
where $n$ is the size of the array,
|
||
the keys in a map can be of any data type and
|
||
they don't have to be successive values.
|
||
|
||
C++ contains two map implementations that
|
||
correspond to the set implementations:
|
||
the structure
|
||
\texttt{map} is based on a balanced
|
||
binary tree and accessing an element
|
||
takes $O(\log n)$ time,
|
||
while the structure
|
||
\texttt{unordered\_map} uses a hash map
|
||
and accessing an element takes $O(1)$ time on average.
|
||
|
||
The following code creates a map
|
||
where the keys are strings and the values are integers:
|
||
|
||
\begin{lstlisting}
|
||
map<string,int> m;
|
||
m["monkey"] = 4;
|
||
m["banana"] = 3;
|
||
m["harpsichord"] = 9;
|
||
cout << m["banana"] << "\n"; // 3
|
||
\end{lstlisting}
|
||
|
||
If a value of a key is requested
|
||
but the map doesn't contain it,
|
||
the key is automatically added to the map with
|
||
a default value.
|
||
For example, in the following code,
|
||
the key ''aybabtu'' with value 0
|
||
is added to the map.
|
||
|
||
\begin{lstlisting}
|
||
map<string,int> m;
|
||
cout << m["aybabtu"] << "\n"; // 0
|
||
\end{lstlisting}
|
||
The function \texttt{count} determines
|
||
if a key exists in the map:
|
||
\begin{lstlisting}
|
||
if (m.count("aybabtu")) {
|
||
cout << "key exists in the map";
|
||
}
|
||
\end{lstlisting}
|
||
The following code prints all keys and values
|
||
in the map:
|
||
\begin{lstlisting}
|
||
for (auto x : m) {
|
||
cout << x.first << " " << x.second << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
|
||
\section{Iterators and ranges}
|
||
|
||
\index{iterator}
|
||
|
||
Many functions in the C++ standard library
|
||
are given iterators to data structures,
|
||
and iterators often correspond to ranges.
|
||
An \key{iterator} is a variable that points
|
||
to an element in a data structure.
|
||
|
||
Often used iterators are \texttt{begin}
|
||
and \texttt{end} that define a range that contains
|
||
all elements in a data structure.
|
||
The iterator \texttt{begin} points to
|
||
the first element in the data structure,
|
||
and the iterator \texttt{end} points to
|
||
the position \emph{after} the last element.
|
||
The situation looks as follows:
|
||
|
||
\begin{center}
|
||
\begin{tabular}{llllllllll}
|
||
\{ & 3, & 4, & 6, & 8, & 12, & 13, & 14, & 17 & \} \\
|
||
& $\uparrow$ & & & & & & & & $\uparrow$ \\
|
||
& \multicolumn{3}{l}{\texttt{s.begin()}} & & & & & & \texttt{s.end()} \\
|
||
\end{tabular}
|
||
\end{center}
|
||
|
||
Note the asymmetry in the iterators:
|
||
\texttt{s.begin()} points to an element in the data structure,
|
||
while \texttt{s.end()} points outside the data structure.
|
||
Thus, the range defined by the iterators is \emph{half-open}.
|
||
|
||
\subsubsection{Handling ranges}
|
||
|
||
Iterators are used in C++ standard library functions
|
||
that work with ranges of data structures.
|
||
Usually, we want to process all elements in a
|
||
data structure, so the iterators
|
||
\texttt{begin} and \texttt{end} are given for the function.
|
||
|
||
For example, the following code sorts a vector
|
||
using the function \texttt{sort},
|
||
then reverses the order of the elements using the function
|
||
\texttt{reverse}, and finally shuffles the order of
|
||
the elements using the function \texttt{random\_shuffle}.
|
||
|
||
\index{sort@\texttt{sort}}
|
||
\index{reverse@\texttt{reverse}}
|
||
\index{random\_shuffle@\texttt{random\_shuffle}}
|
||
|
||
\begin{lstlisting}
|
||
sort(v.begin(), v.end());
|
||
reverse(v.begin(), v.end());
|
||
random_shuffle(v.begin(), v.end());
|
||
\end{lstlisting}
|
||
|
||
These functions can also be used with a regular array.
|
||
In this case, the functions are given pointers to the array
|
||
instead of iterators:
|
||
|
||
\newpage
|
||
\begin{lstlisting}
|
||
sort(t, t+n);
|
||
reverse(t, t+n);
|
||
random_shuffle(t, t+n);
|
||
\end{lstlisting}
|
||
|
||
\subsubsection{Set iterators}
|
||
|
||
Iterators are often used when accessing
|
||
elements in a set.
|
||
The following code creates an iterator
|
||
\texttt{it} that points to the first element in the set:
|
||
\begin{lstlisting}
|
||
set<int>::iterator it = s.begin();
|
||
\end{lstlisting}
|
||
A shorter way to write the code is as follows:
|
||
\begin{lstlisting}
|
||
auto it = s.begin();
|
||
\end{lstlisting}
|
||
The element to which an iterator points
|
||
can be accessed through the \texttt{*} symbol.
|
||
For example, the following code prints
|
||
the first element in the set:
|
||
|
||
\begin{lstlisting}
|
||
auto it = s.begin();
|
||
cout << *it << "\n";
|
||
\end{lstlisting}
|
||
|
||
Iterators can be moved using operators
|
||
\texttt{++} (forward) and \texttt{---} (backward),
|
||
meaning that the iterator moves to the next
|
||
or previous element in the set.
|
||
|
||
The following code prints all elements in the set:
|
||
\begin{lstlisting}
|
||
for (auto it = s.begin(); it != s.end(); it++) {
|
||
cout << *it << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
The following code prints the last element in the set:
|
||
\begin{lstlisting}
|
||
auto it = s.end();
|
||
it--;
|
||
cout << *it << "\n";
|
||
\end{lstlisting}
|
||
|
||
The function $\texttt{find}(x)$ returns an iterator
|
||
that points to an element whose value is $x$.
|
||
However, if the set doesn't contain $x$,
|
||
the iterator will be \texttt{end}.
|
||
|
||
\begin{lstlisting}
|
||
auto it = s.find(x);
|
||
if (it == s.end()) cout << "x is missing";
|
||
\end{lstlisting}
|
||
|
||
The function $\texttt{lower\_bound}(x)$ returns
|
||
an iterator to the smallest element in the set
|
||
whose value is at least $x$.
|
||
Correspondingly,
|
||
the function $\texttt{upper\_bound}(x)$
|
||
returns an iterator to the smallest element
|
||
in the set whose value is larger than $x$.
|
||
If such elements do not exist,
|
||
the return value of the functions will be \texttt{end}.
|
||
These functions are not supported by the
|
||
\texttt{unordered\_set} structure that
|
||
doesn't maintain the order of the elements.
|
||
|
||
\begin{samepage}
|
||
For example, the following code finds the element
|
||
nearest to $x$:
|
||
|
||
\begin{lstlisting}
|
||
auto a = s.lower_bound(x);
|
||
if (a == s.begin() && a == s.end()) {
|
||
cout << "joukko on tyhjä\n";
|
||
} else if (a == s.begin()) {
|
||
cout << *a << "\n";
|
||
} else if (a == s.end()) {
|
||
a--;
|
||
cout << *a << "\n";
|
||
} else {
|
||
auto b = a; b--;
|
||
if (x-*b < *a-x) cout << *b << "\n";
|
||
else cout << *a << "\n";
|
||
}
|
||
\end{lstlisting}
|
||
|
||
The code goes through all possible cases
|
||
using the iterator \texttt{a}.
|
||
First, the iterator points to the smallest
|
||
element whose value is at least $x$.
|
||
If \texttt{a} is both \texttt{begin}
|
||
and \texttt{end} at the same time, the set is empty.
|
||
If \texttt{a} equals \texttt{begin},
|
||
the corresponding element is nearest to $x$.
|
||
If \texttt{a} equals \texttt{end},
|
||
the last element in the set is nearest to $x$.
|
||
If none of the previous cases is true,
|
||
the element nearest to $x$ is either the
|
||
element that corresponds to $a$ or the previous element.
|
||
\end{samepage}
|
||
|
||
\section{Muita tietorakenteita}
|
||
|
||
\subsubsection{Bittijoukko}
|
||
|
||
\index{bittijoukko@bittijoukko}
|
||
\index{bitset@\texttt{bitset}}
|
||
|
||
\key{Bittijoukko} (\texttt{bitset}) on taulukko,
|
||
jonka jokaisen alkion arvo on 0 tai 1.
|
||
Esimerkiksi
|
||
seuraava koodi luo bittijoukon, jossa on 10 alkiota.
|
||
\begin{lstlisting}
|
||
bitset<10> s;
|
||
s[2] = 1;
|
||
s[5] = 1;
|
||
s[6] = 1;
|
||
s[8] = 1;
|
||
cout << s[4] << "\n"; // 0
|
||
cout << s[5] << "\n"; // 1
|
||
\end{lstlisting}
|
||
|
||
Bittijoukon etuna on, että se vie tavallista
|
||
taulukkoa vähemmän muistia,
|
||
koska jokainen alkio vie
|
||
vain yhden bitin muistia.
|
||
Esimerkiksi $n$ bitin tallentaminen
|
||
\texttt{int}-taulukkona vie $32n$
|
||
bittiä tilaa, mutta bittijoukkona
|
||
vain $n$ bittiä tilaa.
|
||
Lisäksi bittijoukon sisältöä
|
||
voi käsitellä tehokkaasti bittioperaatioilla,
|
||
minkä ansiosta sillä voi tehostaa algoritmeja.
|
||
|
||
Seuraava koodi näyttää toisen tavan
|
||
bittijoukon luomiseen:
|
||
|
||
\begin{lstlisting}
|
||
bitset<10> s(string("0010011010"));
|
||
cout << s[4] << "\n"; // 0
|
||
cout << s[5] << "\n"; // 1
|
||
\end{lstlisting}
|
||
|
||
Funktio \texttt{count} palauttaa
|
||
bittijoukon ykkösbittien määrän:
|
||
|
||
\begin{lstlisting}
|
||
bitset<10> s(string("0010011010"));
|
||
cout << s.count() << "\n"; // 4
|
||
\end{lstlisting}
|
||
|
||
Seuraava koodi näyttää esimerkkejä
|
||
bittioperaatioiden käyttämisestä:
|
||
\begin{lstlisting}
|
||
bitset<10> a(string("0010110110"));
|
||
bitset<10> b(string("1011011000"));
|
||
cout << (a&b) << "\n"; // 0010010000
|
||
cout << (a|b) << "\n"; // 1011111110
|
||
cout << (a^b) << "\n"; // 1001101110
|
||
\end{lstlisting}
|
||
|
||
\subsubsection{Pakka}
|
||
|
||
\index{pakka@pakka}
|
||
\index{deque@\texttt{deque}}
|
||
|
||
\key{Pakka} (\texttt{deque}) on dynaaminen taulukko,
|
||
jonka kokoa pystyy muuttamaan tehokkaasti
|
||
sekä alku- että loppupäässä.
|
||
Pakka sisältää vektorin tavoin
|
||
funktiot \texttt{push\_back}
|
||
ja \texttt{pop\_back}, mutta siinä on lisäksi myös funktiot
|
||
\texttt{push\_front} ja \texttt{pop\_front},
|
||
jotka käsittelevät taulukon alkua.
|
||
|
||
Seuraava koodi esittelee pakan käyttämistä:
|
||
|
||
\begin{lstlisting}
|
||
deque<int> d;
|
||
d.push_back(5); // [5]
|
||
d.push_back(2); // [5,2]
|
||
d.push_front(3); // [3,5,2]
|
||
d.pop_back(); // [3,5]
|
||
d.pop_front(); // [5]
|
||
\end{lstlisting}
|
||
|
||
Pakan sisäinen toteutus on monimutkaisempi kuin
|
||
vektorissa, minkä vuoksi se on
|
||
vektoria raskaampi rakenne.
|
||
Kuitenkin lisäyksen ja poiston
|
||
aikavaativuus on keskimäärin $O(1)$ molemmissa päissä.
|
||
|
||
\subsubsection{Pino}
|
||
|
||
\index{pino@pino}
|
||
\index{stack@\texttt{stack}}
|
||
|
||
\key{Pino} (\texttt{stack}) on tietorakenne,
|
||
joka tarjoaa kaksi $O(1)$-aikaista
|
||
operaatiota:
|
||
alkion lisäys pinon päälle ja alkion
|
||
poisto pinon päältä.
|
||
Pinossa ei ole mahdollista käsitellä muita
|
||
alkioita kuin pinon päällimmäistä alkiota.
|
||
|
||
Seuraava koodi esittelee pinon käyttämistä:
|
||
|
||
\begin{lstlisting}
|
||
stack<int> s;
|
||
s.push(3);
|
||
s.push(2);
|
||
s.push(5);
|
||
cout << s.top(); // 5
|
||
s.pop();
|
||
cout << s.top(); // 2
|
||
\end{lstlisting}
|
||
\subsubsection{Jono}
|
||
|
||
\index{jono@jono}
|
||
\index{queue@\texttt{queue}}
|
||
|
||
\key{Jono} (\texttt{queue}) on kuin pino,
|
||
mutta alkion lisäys tapahtuu jonon loppuun
|
||
ja alkion poisto tapahtuu jonon alusta.
|
||
Jonossa on mahdollista käsitellä vain
|
||
alussa ja lopussa olevaa alkiota.
|
||
|
||
Seuraava koodi esittelee jonon käyttämistä:
|
||
|
||
\begin{lstlisting}
|
||
queue<int> s;
|
||
s.push(3);
|
||
s.push(2);
|
||
s.push(5);
|
||
cout << s.front(); // 3
|
||
s.pop();
|
||
cout << s.front(); // 2
|
||
\end{lstlisting}
|
||
%
|
||
% Huomaa, että rakenteiden \texttt{stack} ja \texttt{queue}
|
||
% sijasta voi aina käyttää rakenteita
|
||
% \texttt{vector} ja \texttt{deque}, joilla voi
|
||
% tehdä kaiken saman ja enemmän.
|
||
% Kuitenkin \texttt{stack} ja \texttt{queue} ovat
|
||
% kevyempiä ja hieman tehokkaampia rakenteita,
|
||
% jos niiden operaatiot riittävät algoritmin toteuttamiseen.
|
||
|
||
\subsubsection{Prioriteettijono}
|
||
|
||
\index{prioriteettijono@prioriteettijono}
|
||
\index{keko@keko}
|
||
\index{priority\_queue@\texttt{priority\_queue}}
|
||
|
||
\key{Prioriteettijono} (\texttt{priority\_queue})
|
||
pitää yllä joukkoa alkioista.
|
||
Sen operaatiot ovat alkion lisäys ja
|
||
jonon tyypistä riippuen joko
|
||
pienimmän alkion haku ja poisto tai
|
||
suurimman alkion haku ja poisto.
|
||
Lisäyksen ja poiston aikavaativuus on $O(\log n)$
|
||
ja haun aikavaativuus on $O(1)$.
|
||
|
||
Vaikka prioriteettijonon operaatiot
|
||
pystyy toteuttamaan myös \texttt{set}-ra\-ken\-teel\-la,
|
||
prioriteettijonon etuna on,
|
||
että sen kekoon perustuva sisäinen
|
||
toteutus on yksinkertaisempi
|
||
kuin \texttt{set}-rakenteen tasapainoinen binääripuu,
|
||
minkä vuoksi rakenne on kevyempi ja
|
||
operaatiot ovat tehokkaampia.
|
||
|
||
\begin{samepage}
|
||
C++:n prioriteettijono toimii oletuksena niin,
|
||
että alkiot ovat järjestyksessä suurimmasta pienimpään
|
||
ja jonosta pystyy hakemaan ja poistamaan suurimman alkion.
|
||
Seuraava koodi esittelee prioriteettijonon käyttämistä:
|
||
|
||
\begin{lstlisting}
|
||
priority_queue<int> q;
|
||
q.push(3);
|
||
q.push(5);
|
||
q.push(7);
|
||
q.push(2);
|
||
cout << q.top() << "\n"; // 7
|
||
q.pop();
|
||
cout << q.top() << "\n"; // 5
|
||
q.pop();
|
||
q.push(6);
|
||
cout << q.top() << "\n"; // 6
|
||
q.pop();
|
||
\end{lstlisting}
|
||
\end{samepage}
|
||
|
||
Seuraava määrittely luo käänteisen prioriteettijonon,
|
||
jossa jonosta pystyy hakemaan ja poistamaan pienimmän alkion:
|
||
|
||
\begin{lstlisting}
|
||
priority_queue<int,vector<int>,greater<int>> q;
|
||
\end{lstlisting}
|
||
|
||
\section{Vertailu järjestämiseen}
|
||
|
||
Monen tehtävän voi ratkaista tehokkaasti joko
|
||
käyttäen sopivia tietorakenteita
|
||
tai taulukon järjestämistä.
|
||
Vaikka erilaiset ratkaisutavat olisivat kaikki
|
||
periaatteessa tehokkaita, niissä voi olla
|
||
käytännössä merkittäviä eroja.
|
||
|
||
Tarkastellaan ongelmaa, jossa
|
||
annettuna on kaksi listaa $A$ ja $B$,
|
||
joista kummassakin on $n$ kokonaislukua.
|
||
Tehtävänä on selvittää, moniko luku
|
||
esiintyy kummassakin listassa.
|
||
Esimerkiksi jos listat ovat
|
||
\[A = [5,2,8,9,4] \hspace{10px} \textrm{ja} \hspace{10px} B = [3,2,9,5],\]
|
||
niin vastaus on 3, koska luvut 2, 5
|
||
ja 9 esiintyvät kummassakin listassa.
|
||
Suoraviivainen ratkaisu tehtävään on käydä läpi
|
||
kaikki lukuparit ajassa $O(n^2)$, mutta seuraavaksi
|
||
keskitymme tehokkaampiin ratkaisuihin.
|
||
|
||
\subsubsection{Ratkaisu 1}
|
||
|
||
Tallennetaan listan $A$ luvut joukkoon
|
||
ja käydään sitten läpi listan $B$ luvut ja
|
||
tarkistetaan jokaisesta, esiintyykö se myös listassa $A$.
|
||
Joukon ansiosta on tehokasta tarkastaa,
|
||
esiintyykö listan $B$ luku listassa $A$.
|
||
Kun joukko toteutetaan \texttt{set}-rakenteella,
|
||
algoritmin aikavaativuus on $O(n \log n)$.
|
||
|
||
\subsubsection{Ratkaisu 2}
|
||
|
||
Joukon ei tarvitse säilyttää lukuja
|
||
järjestyksessä, joten
|
||
\texttt{set}-ra\-ken\-teen sijasta voi
|
||
käyttää myös \texttt{unordered\_set}-ra\-ken\-net\-ta.
|
||
Tämä on helppo tapa parantaa algoritmin
|
||
tehokkuutta, koska
|
||
algoritmin toteutus säilyy samana ja vain tietorakenne vaihtuu.
|
||
Uuden algoritmin aikavaativuus on $O(n)$.
|
||
|
||
\subsubsection{Ratkaisu 3}
|
||
|
||
Tietorakenteiden sijasta voimme käyttää järjestämistä.
|
||
Järjestetään ensin listat $A$ ja $B$,
|
||
minkä jälkeen yhteiset luvut voi löytää
|
||
käymällä listat rinnakkain läpi.
|
||
Järjestämisen aikavaativuus on $O(n \log n)$ ja
|
||
läpikäynnin aikavaativuus on $O(n)$,
|
||
joten kokonaisaikavaativuus on $O(n \log n)$.
|
||
|
||
\subsubsection{Tehokkuusvertailu}
|
||
|
||
Seuraavassa taulukossa on mittaustuloksia
|
||
äskeisten algoritmien tehokkuudesta,
|
||
kun $n$ vaihtelee ja listojen luvut ovat
|
||
satunnaisia lukuja välillä $1 \ldots 10^9$:
|
||
|
||
\begin{center}
|
||
\begin{tabular}{rrrr}
|
||
$n$ & ratkaisu 1 & ratkaisu 2 & ratkaisu 3 \\
|
||
\hline
|
||
$10^6$ & $1{,}5$ s & $0{,}3$ s & $0{,}2$ s \\
|
||
$2 \cdot 10^6$ & $3{,}7$ s & $0{,}8$ s & $0{,}3$ s \\
|
||
$3 \cdot 10^6$ & $5{,}7$ s & $1{,}3$ s & $0{,}5$ s \\
|
||
$4 \cdot 10^6$ & $7{,}7$ s & $1{,}7$ s & $0{,}7$ s \\
|
||
$5 \cdot 10^6$ & $10{,}0$ s & $2{,}3$ s & $0{,}9$ s \\
|
||
\end{tabular}
|
||
\end{center}
|
||
|
||
Ratkaisut 1 ja 2 ovat muuten samanlaisia,
|
||
mutta ratkaisu 1 käyttää \texttt{set}-rakennetta,
|
||
kun taas ratkaisu 2 käyttää
|
||
\texttt{unordered\_set}-rakennetta.
|
||
Tässä tapauksessa tällä valinnalla on
|
||
merkittävä vaikutus suoritusaikaan,
|
||
koska ratkaisu 2 on 4–5 kertaa
|
||
nopeampi kuin ratkaisu 1.
|
||
|
||
Tehokkain ratkaisu on kuitenkin järjestämistä
|
||
käyttävä ratkaisu 3, joka on vielä puolet
|
||
nopeampi kuin ratkaisu 2.
|
||
Kiinnostavaa on, että sekä ratkaisun 1 että
|
||
ratkaisun 3 aikavaativuus on $O(n \log n)$,
|
||
mutta siitä huolimatta
|
||
ratkaisu 3 vie aikaa vain kymmenesosan.
|
||
Tämän voi selittää sillä, että
|
||
järjestäminen on kevyt
|
||
operaatio ja se täytyy tehdä vain kerran
|
||
ratkaisussa 3 algoritmin alussa,
|
||
minkä jälkeen algoritmin loppuosa on lineaarinen.
|
||
Ratkaisu 1 taas pitää yllä monimutkaista
|
||
tasapainoista binääripuuta koko algoritmin ajan. |