cphb/list.tex

384 lines
11 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\begin{thebibliography}{9}
\bibitem{aho83}
A. V. Aho, J. E. Hopcroft and J. Ullman.
\emph{Data Structures and Algorithms},
Addison-Wesley, 1983.
\bibitem{ahu91}
R. K. Ahuja and J. B. Orlin.
Distance directed augmenting path algorithms for maximum flow and parametric maximum flow problems.
\emph{Naval Research Logistics}, 38(3):413--430, 1991.
\bibitem{and79}
A. M. Andrew.
Another efficient algorithm for convex hulls in two dimensions.
\emph{Information Processing Letters}, 9(5):216--219, 1979.
\bibitem{asp79}
B. Aspvall, M. F. Plass and R. E. Tarjan.
A linear-time algorithm for testing the truth of certain quantified boolean formulas.
\emph{Information Processing Letters}, 8(3):121--123, 1979.
\bibitem{bel58}
R. Bellman.
On a routing problem.
\emph{Quarterly of Applied Mathematics}, 16(1):87--90, 1958.
\bibitem{bec07}
M. Beck, E. Pine, W. Tarrat and K. Y. Jensen.
New integer representations as the sum of three cubes.
\emph{Mathematics of Computation}, 76(259):1683--1690, 2007.
\bibitem{ben00}
M. A. Bender and M. Farach-Colton.
The LCA problem revisited. In
\emph{Latin American Symposium on Theoretical Informatics}, 88--94, 2000.
\bibitem{ben86}
J. Bentley.
\emph{Programming Pearls}.
Addison-Wesley, 1999 (2nd edition).
\bibitem{ben80}
J. Bentley and D. Wood.
An optimal worst case algorithm for reporting intersections of rectangles.
\emph{IEEE Transactions on Computers}, C-29(7):571--577, 1980.
\bibitem{bou01}
C. L. Bouton.
Nim, a game with a complete mathematical theory.
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
% \bibitem{bur97}
% W. Burnside.
% \emph{Theory of Groups of Finite Order},
% Cambridge University Press, 1897.
\bibitem{coci}
Croatian Open Competition in Informatics, \url{http://hsin.hr/coci/}
\bibitem{cod15}
Codeforces: On ''Mo's algorithm'',
\url{http://codeforces.com/blog/entry/20032}
\bibitem{cor09}
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
\emph{Introduction to Algorithms}, MIT Press, 2009 (3rd edition).
\bibitem{dij59}
E. W. Dijkstra.
A note on two problems in connexion with graphs.
\emph{Numerische Mathematik}, 1(1):269--271, 1959.
\bibitem{dik12}
K. Diks et al.
\emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions}, University of Warsaw, 2012.
% \bibitem{dil50}
% R. P. Dilworth.
% A decomposition theorem for partially ordered sets.
% \emph{Annals of Mathematics}, 51(1):161--166, 1950.
% \bibitem{dir52}
% G. A. Dirac.
% Some theorems on abstract graphs.
% \emph{Proceedings of the London Mathematical Society}, 3(1):69--81, 1952.
\bibitem{dim15}
M. Dima and R. Ceterchi.
Efficient range minimum queries using binary indexed trees.
\emph{Olympiad in Informatics}, 9(1):39--44, 2015.
\bibitem{edm65}
J. Edmonds.
Paths, trees, and flowers.
\emph{Canadian Journal of Mathematics}, 17(3):449--467, 1965.
\bibitem{edm72}
J. Edmonds and R. M. Karp.
Theoretical improvements in algorithmic efficiency for network flow problems.
\emph{Journal of the ACM}, 19(2):248--264, 1972.
\bibitem{eve75}
S. Even, A. Itai and A. Shamir.
On the complexity of time table and multi-commodity flow problems.
\emph{16th Annual Symposium on Foundations of Computer Science}, 184--193, 1975.
\bibitem{fan94}
D. Fanding.
A faster algorithm for shortest-path -- SPFA.
\emph{Journal of Southwest Jiaotong University}, 2, 1994.
\bibitem{fen94}
P. M. Fenwick.
A new data structure for cumulative frequency tables.
\emph{Software: Practice and Experience}, 24(3):327--336, 1994.
\bibitem{fis06}
J. Fischer and V. Heun.
Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE.
In \emph{Annual Symposium on Combinatorial Pattern Matching}, 36--48, 2006.
\bibitem{flo62}
R. W. Floyd
Algorithm 97: shortest path.
\emph{Communications of the ACM}, 5(6):345, 1962.
\bibitem{for56a}
L. R. Ford.
Network flow theory.
RAND Corporation, Santa Monica, California, 1956.
\bibitem{for56}
L. R. Ford and D. R. Fulkerson.
Maximal flow through a network.
\emph{Canadian Journal of Mathematics}, 8(3):399--404, 1956.
\bibitem{fre77}
R. Freivalds.
Probabilistic machines can use less running time.
In \emph{IFIP congress}, 839--842, 1977.
\bibitem{gal14}
F. Le Gall.
Powers of tensors and fast matrix multiplication.
In \emph{Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation},
296--303, 2014.
\bibitem{gar79}
M. R. Garey and D. S. Johnson.
\emph{Computers and Intractability:
A Guide to the Theory of NP-Completeness},
W. H. Freeman and Company, 1979.
\bibitem{goo16}
Google Code Jam Statistics (2016),
\url{https://www.go-hero.net/jam/16}
\bibitem{gro14}
A. Grønlund and S. Pettie.
Threesomes, degenerates, and love triangles.
In \emph{Proceedings of the 55th Annual Symposium on Foundations of Computer Science},
621--630, 2014.
\bibitem{gru39}
P. M. Grundy.
Mathematics and games.
\emph{Eureka}, 2(5):6--8, 1939.
\bibitem{gus97}
D. Gusfield.
\emph{Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology},
Cambridge University Press, 1997.
% \bibitem{hal35}
% P. Hall.
% On representatives of subsets.
% \emph{Journal London Mathematical Society} 10(1):26--30, 1935.
\bibitem{hal13}
S. Halim and F. Halim.
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests}, 2013.
\bibitem{hel62}
M. Held and R. M. Karp.
A dynamic programming approach to sequencing problems.
\emph{Journal of the Society for Industrial and Applied Mathematics}, 10(1):196--210, 1962.
\bibitem{hie73}
C. Hierholzer and C. Wiener.
Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.
\emph{Mathematische Annalen}, 6(1), 30--32, 1873.
\bibitem{hoa61a}
C. A. R. Hoare.
Algorithm 64: Quicksort.
\emph{Communications of the ACM}, 4(7):321, 1961.
\bibitem{hoa61b}
C. A. R. Hoare.
Algorithm 65: Find.
\emph{Communications of the ACM}, 4(7):321--322, 1961.
\bibitem{hop71}
J. E. Hopcroft and J. D. Ullman.
A linear list merging algorithm.
Technical report, Cornell University, 1971.
\bibitem{hor74}
E. Horowitz and S. Sahni.
Computing partitions with applications to the knapsack problem.
\emph{Journal of the ACM}, 21(2):277--292, 1974.
\bibitem{huf52}
D. A. Huffman.
A method for the construction of minimum-redundancy codes.
\emph{Proceedings of the IRE}, 40(9):1098--1101, 1952.
\bibitem{iois}
The International Olympiad in Informatics Syllabus,
\url{https://people.ksp.sk/~misof/ioi-syllabus/}
\bibitem{kar87}
R. M. Karp and M. O. Rabin.
Efficient randomized pattern-matching algorithms.
\emph{IBM Journal of Research and Development}, 31(2):249--260, 1987.
\bibitem{kas61}
P. W. Kasteleyn.
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
\emph{Physica}, 27(12):1209--1225, 1961.
\bibitem{ken06}
C. Kent, G. M. Landau and M. Ziv-Ukelson.
On the complexity of sparse exon assembly.
\emph{Journal of Computational Biology}, 13(5):1013--1027, 2006.
\bibitem{kle05}
J. Kleinberg and É. Tardos.
\emph{Algorithm Design}, Pearson, 2005.
\bibitem{knu982}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 2: Seminumerical Algorithms}, AddisonWesley, 1998 (3rd edition).
\bibitem{knu983}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 3: Sorting and Searching}, AddisonWesley, 1998 (2nd edition).
% \bibitem{kon31}
% D. Kőnig.
% Gráfok és mátrixok.
% \emph{Matematikai és Fizikai Lapok}, 38(1):116--119, 1931.
\bibitem{kru56}
J. B. Kruskal.
On the shortest spanning subtree of a graph and the traveling salesman problem.
\emph{Proceedings of the American Mathematical Society}, 7(1):48--50, 1956.
\bibitem{lev66}
V. I. Levenshtein.
Binary codes capable of correcting deletions, insertions, and reversals.
\emph{Soviet physics doklady}, 10(8):707--710, 1966.
\bibitem{mai84}
M. G. Main and R. J. Lorentz.
An $O(n \log n)$ algorithm for finding all repetitions in a string.
\emph{Journal of Algorithms}, 5(3):422--432, 1984.
\bibitem{main}
Młodzieżowa Akademia Informatyczna (MAIN), \texttt{http://main.edu.pl/}
% \bibitem{ore60}
% Ø. Ore.
% Note on Hamilton circuits.
% \emph{The American Mathematical Monthly}, 67(1):55, 1960.
\bibitem{pac13}
J. Pachocki and J. Radoszewski.
Where to use and how not to use polynomial string hashing.
\emph{Olympiads in Informatics}, 7(1):90--100, 2013.
\bibitem{par97}
I. Parberry.
An efficient algorithm for the Knight's tour problem.
\emph{Discrete Applied Mathematics}, 73(3):251--260, 1997.
% \bibitem{pic99}
% G. Pick.
% Geometrisches zur Zahlenlehre.
% \emph{Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines
% für Böhmen "Lotos" in Prag. (Neue Folge)}, 19:311--319, 1899.
\bibitem{pea05}
D. Pearson.
A polynomial-time algorithm for the change-making problem.
\emph{Operations Research Letters}, 33(3):231--234, 2005.
\bibitem{pri57}
R. C. Prim.
Shortest connection networks and some generalizations.
\emph{Bell System Technical Journal}, 36(6):1389--1401, 1957.
% \bibitem{pru18}
% H. Prüfer.
% Neuer Beweis eines Satzes über Permutationen.
% \emph{Arch. Math. Phys}, 27:742--744, 1918.
\bibitem{q27}
27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
\url{https://github.com/preusser/q27}
\bibitem{sha75}
M. I. Shamos and D. Hoey.
Closest-point problems.
In \emph{Proceedings of the 16th Annual Symposium on Foundations of Computer Science}, 151--162, 1975.
\bibitem{sha81}
M. Sharir.
A strong-connectivity algorithm and its applications in data flow analysis.
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
\bibitem{ski08}
S. S. Skiena.
\emph{The Algorithm Design Manual}, Springer, 2008 (2nd edition).
\bibitem{ski03}
S. S. Skiena and M. A. Revilla.
\emph{Programming Challenges: The Programming Contest Training Manual},
Springer, 2003.
\bibitem{spr35}
R. Sprague.
Über mathematische Kampfspiele.
\emph{Tohoku Mathematical Journal}, 41:438--444, 1935.
\bibitem{sta06}
P. Stańczyk.
\emph{Algorytmika praktyczna w konkursach Informatycznych},
MSc thesis, University of Warsaw, 2006.
\bibitem{str69}
V. Strassen.
Gaussian elimination is not optimal.
\emph{Numerische Mathematik}, 13(4):354--356, 1969.
\bibitem{tar75}
R. E. Tarjan.
Efficiency of a good but not linear set union algorithm.
\emph{Journal of the ACM}, 22(2):215--225, 1975.
\bibitem{tar84}
R. E. Tarjan and U. Vishkin.
Finding biconnected componemts and computing tree functions in logarithmic parallel time.
In \emph{Proceedings of the 25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984.
\bibitem{tem61}
H. N. V. Temperley and M. E. Fisher.
Dimer problem in statistical mechanics -- an exact result.
\emph{Philosophical Magazine}, 6(68):1061--1063, 1961.
\bibitem{usaco}
USA Computing Olympiad, \url{http://www.usaco.org/}
\bibitem{war23}
H. C. von Warnsdorf.
\emph{Des Rösselsprunges einfachste und allgemeinste Lösung}.
Schmalkalden, 1823.
\bibitem{war62}
S. Warshall.
A theorem on boolean matrices.
\emph{Journal of the ACM}, 9(1):11--12, 1962.
% \bibitem{zec72}
% E. Zeckendorf.
% Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.
% \emph{Bull. Soc. Roy. Sci. Liege}, 41:179--182, 1972.
\end{thebibliography}