cphb/luku07.tex

999 lines
29 KiB
TeX

\chapter{Dynamic programming}
\index{dynamic programming}
\key{Dynamic programming}
is a technique that combines the correctness
of complete search and the efficiency
of greedy algorithms.
Dynamic programming can be used if the
problem can be divided into subproblems
that can be calculated independently.
There are two uses for dynamic programming:
\begin{itemize}
\item
\key{Findind an optimal solution}:
We want to find a solution that is
as large as possible or as small as possible.
\item
\key{Couting the number of solutions}:
We want to calculate the total number of
possible solutions.
\end{itemize}
We will first see how dynamic programming can
be used for finding an optimal solution,
and then we will use the same idea for
counting the solutions.
Understanding dynamic programming is a milestone
in every competitive programmer's career.
While the basic idea of the technique is simple,
the challenge is how to apply it for different problems.
This chapter introduces a set of classic problems
that are a good starting point.
\section{Coin problem}
We first consider a problem that we
have already seen:
Given a set of coin values $\{c_1,c_2,\ldots,c_k\}$
and a sum of money $x$, our task is to
form the sum $x$ using as few coins as possible.
In Chapter 6.1, we solved the problem using a
greedy algorithm that always selects the largest
possible coin for the sum.
The greedy algorithm works, for example,
when the coins are the euro coins,
but in the general case the greedy algorithm
doesn't necessarily produce an optimal solution.
Now it's time to solve the problem efficiently
using dynamic programming, so that the algorithms
works for any coin set.
The dynamic programming
algorithm is based on a recursive function
that goes through all possibilities how to
select the coins, like a brute force algorithm.
However, the dynamic programming
algorithm is efficient because
it uses memoization to
calculate the answer for each subproblem only once.
\subsubsection{Recursive formulation}
The idea in dynamic programming is to
formulate the problem recursively so
that the answer for the problem can be
calculated from the answers for the smaller
subproblems.
In this case, a natural problem is as follows:
what is the smallest number of coins
required for constructing sum $x$?
Let $f(x)$ be a function that gives the answer
for the problem, i.e., $f(x)$ is the smallest
number of coins required for constructing sum $x$.
The values of the function depend on the
values of the coins.
For example, if the values are $\{1,3,4\}$,
the first values of the function are as follows:
\[
\begin{array}{lcl}
f(0) & = & 0 \\
f(1) & = & 1 \\
f(2) & = & 2 \\
f(3) & = & 1 \\
f(4) & = & 1 \\
f(5) & = & 2 \\
f(6) & = & 2 \\
f(7) & = & 2 \\
f(8) & = & 2 \\
f(9) & = & 3 \\
f(10) & = & 3 \\
\end{array}
\]
First, $f(0)=0$ because no coins are needed
for sum $0$.
Moreover, $f(3)=1$ because the sum $3$
can be formed using coin 3,
and $f(5)=2$ because the sum 5 can
be formed using coins 1 and 4.
The essential property in the function is
that the value $f(x)$ can be calculated
recursively from the smaller values of the function.
For example, if the coin set is $\{1,3,4\}$,
there are three ways to select the first coin
in a solution: we can choose coin 1, 3 or 4.
If coin 1 is chosen, the remaining task is to
form the sum $x-1$.
Similarly, if coin 3 or 4 is chosen,
we should form the sum $x-3$ or $x-4$.
Thus, the recursive formula is
\[f(x) = \min(f(x-1),f(x-3),f(x-4))+1\]
where the function $\min$ returns the smallest
of its parameters.
In the general case, for the coin set
$\{c_1,c_2,\ldots,c_k\}$,
the recursive formula is
\[f(x) = \min(f(x-c_1),f(x-c_2),\ldots,f(x-c_k))+1.\]
The base case for the function is
\[f(0)=0,\]
because no coins are needed for constructing
the sum 0.
In addition, it's a good idea to define
\[f(x)=\infty,\hspace{8px}\textrm{jos $x<0$}.\]
This means that an infinite number of coins
is needed to create a negative sum of money.
This prevents the situation that the recursive
function would form a solution where the
initial sum of money is negative.
Now it's possible to implement the function in C++
directly using the recursive definition:
\begin{lstlisting}
int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
int u = 1e9;
for (int i = 1; i <= k; i++) {
u = min(u, f(x-c[i])+1);
}
return u;
}
\end{lstlisting}
The code assumes that the available coins are
$\texttt{c}[1], \texttt{c}[2], \ldots, \texttt{c}[k]$,
and the value $10^9$ means infinity.
This function works but it is not efficient yet
because it goes through a large number
of ways to construct the sum.
However, the function becomes efficient by
using memoization.
\subsubsection{Memoization}
\index{memoization}
Dynamic programming allows to calculate the
value of a recursive function efficiently
using \key{memoization}.
This means that an auxiliary array is used
for storing the values of the function
for different parameters.
For each parameter, the value of the function
is calculated only once, and after this,
it can be directly retrieved from the array.
In this problem, we can use the array
\begin{lstlisting}
int d[N];
\end{lstlisting}
where $\texttt{d}[x]$ will contain
the value $f(x)$.
The constant $N$ should be chosen so
that there is space for all needed
values of the function.
After this, the function can be efficiently
implemented as follows:
\begin{lstlisting}
int f(int x) {
if (x == 0) return 0;
if (x < 0) return 1e9;
if (d[x]) return d[x];
int u = 1e9;
for (int i = 1; i <= k; i++) {
u = min(u, f(x-c[i])+1);
}
d[x] = u;
return d[x];
}
\end{lstlisting}
The function handles the base cases
$x=0$ and $x<0$ as previously.
Then the function checks if
$f(x)$ has already been calculated
and stored to $\texttt{d}[x]$.
If $f(x)$ can be found in the array,
the function directly returns it.
Otherwise the function calculates the value
recursively and stores it to $\texttt{d}[x]$.
Using memoization the function works
efficiently because it is needed to
recursively calculate
the answer for each $x$ only once.
After a value $f(x)$ has been stored to the array,
it can be directly retrieved whenever the
function will be called again with parameter $x$.
The time complexity of the resulting algorithm
is $O(xk)$ when the sum is $x$ and the number of
coins is $k$.
In practice, the algorithm is usable if
$x$ is so small that it is possible to allocate
an array for all possible function parameters.
Note that the array can also be constructed using
a loop that calculates all the values
instead of a recursive function:
\begin{lstlisting}
d[0] = 0;
for (int i = 1; i <= x; i++) {
int u = 1e9;
for (int j = 1; j <= k; j++) {
if (i-c[j] < 0) continue;
u = min(u, d[i-c[j]]+1);
}
d[i] = u;
}
\end{lstlisting}
This implementation is shorter and somewhat
more efficient than recursion,
and experienced competitive programmers
often implement dynamic programming solutions
using loops.
Still, the underlying idea is the same as
in the recursive function.
\subsubsection{Constructing the solution}
Sometimes it is not enough to find out the value
of the optimal solution, but we should also give
an example how such a solution can be constructed.
In this problem, this means that the algorithm
should show how to select the coins that produce
the sum $x$ using as few coins as possible.
We can construct the solution by adding another
array to the code. The array indicates for
each sum of money the first coin that should be
chosen in an optimal solution.
In the following code, the array \texttt{e}
is used for this:
\begin{lstlisting}
d[0] = 0;
for (int i = 1; i <= x; i++) {
d[i] = 1e9;
for (int j = 1; j <= k; j++) {
if (i-c[j] < 0) continue;
int u = d[i-c[j]]+1;
if (u < d[i]) {
d[i] = u;
e[i] = c[j];
}
}
}
\end{lstlisting}
After this, we can print the coins needed
for the sum $x$ as follows:
\begin{lstlisting}
while (x > 0) {
cout << e[x] << "\n";
x -= e[x];
}
\end{lstlisting}
\subsubsection{Counting the number of solutions}
Let us now consider a variation of the problem
that it's like the original problem but we should
count the total number of solutions instead
of finding the optimal solution.
For example, if the coins are $\{1,3,4\}$ and
the required sum is $5$,
there are a total of 6 solutions:
\begin{multicols}{2}
\begin{itemize}
\item $1+1+1+1+1$
\item $1+1+3$
\item $1+3+1$
\item $3+1+1$
\item $1+4$
\item $4+1$
\end{itemize}
\end{multicols}
The number of the solutions can be calculated
using the same idea as finding the optimal solution.
The difference is that when finding the optimal solution,
we maximize or minimize something in the recursion,
but now we will sum together all possible alternatives to
construct a solution.
In this case, we can define a function $f(x)$
that returns the number of ways to construct
the sum $x$ using the coins.
For example, $f(5)=6$ when the coins are $\{1,3,4\}$.
The function $f(x)$ can be recursively calculated
using the formula
\[ f(x) = f(x-c_1)+f(x-c_2)+\cdots+f(x-c_k)\]
because to form the sum $x$ we should first
choose some coin $c_i$ and after this form the sum $x-c_i$.
The base cases are $f(0)=1$ because there is exactly
one way to form the sum 0 using an empty set of coins,
and $f(x)=0$, when $x<0$, because it's not possible
to form a negative sum of money.
In the above example the function becomes
\[ f(x) = f(x-1)+f(x-3)+f(x-4) \]
and the first values of the function are:
\[
\begin{array}{lcl}
f(0) & = & 1 \\
f(1) & = & 1 \\
f(2) & = & 1 \\
f(3) & = & 2 \\
f(4) & = & 4 \\
f(5) & = & 6 \\
f(6) & = & 9 \\
f(7) & = & 15 \\
f(8) & = & 25 \\
f(9) & = & 40 \\
\end{array}
\]
The following code calculates the value $f(x)$
using dynamic programming by filling the array
\texttt{d} for parameters $0 \ldots x$:
\begin{lstlisting}
d[0] = 1;
for (int i = 1; i <= x; i++) {
for (int j = 1; j <= k; j++) {
if (i-c[j] < 0) continue;
d[i] += d[i-c[j]];
}
}
\end{lstlisting}
Often the number of the solutions is so large
that it is not required to calculate the exact number
but it is enough to give the answer modulo $m$
where, for example, $m=10^9+7$.
This can be done by changing the code so that
all calculations will be done in modulo $m$.
In this case, it is enough to add the line
\begin{lstlisting}
d[i] %= m;
\end{lstlisting}
after the line
\begin{lstlisting}
d[i] += d[i-c[j]];
\end{lstlisting}
Now we have covered all basic
techniques related to
dynamic programming.
Since dynamic programming can be used
in many different situations,
we will now go through a set of problems
that show further examples how dynamic
programming can be used.
\section{Longest increasing subsequence}
\index{longest increasing subsequence}
Given an array that contains $n$
numbers $x_1,x_2,\ldots,x_n$,
our task is find the
\key{longest increasing subsequence}
in the array.
This is a sequence of array elements
that goes from the left to the right,
and each element in the sequence is larger
than the previous element.
For example, in the array
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$6$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$5$};
\node at (3.5,0.5) {$1$};
\node at (4.5,0.5) {$7$};
\node at (5.5,0.5) {$4$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$3$};
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
the longest increasing subsequence
contains 4 elements:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=lightgray] (1,0) rectangle (2,1);
\fill[color=lightgray] (2,0) rectangle (3,1);
\fill[color=lightgray] (4,0) rectangle (5,1);
\fill[color=lightgray] (6,0) rectangle (7,1);
\draw (0,0) grid (8,1);
\node at (0.5,0.5) {$6$};
\node at (1.5,0.5) {$2$};
\node at (2.5,0.5) {$5$};
\node at (3.5,0.5) {$1$};
\node at (4.5,0.5) {$7$};
\node at (5.5,0.5) {$4$};
\node at (6.5,0.5) {$8$};
\node at (7.5,0.5) {$3$};
\draw[thick,->] (1.5,-0.25) .. controls (1.75,-1.00) and (2.25,-1.00) .. (2.4,-0.25);
\draw[thick,->] (2.6,-0.25) .. controls (3.0,-1.00) and (4.0,-1.00) .. (4.4,-0.25);
\draw[thick,->] (4.6,-0.25) .. controls (5.0,-1.00) and (6.0,-1.00) .. (6.5,-0.25);
\footnotesize
\node at (0.5,1.4) {$1$};
\node at (1.5,1.4) {$2$};
\node at (2.5,1.4) {$3$};
\node at (3.5,1.4) {$4$};
\node at (4.5,1.4) {$5$};
\node at (5.5,1.4) {$6$};
\node at (6.5,1.4) {$7$};
\node at (7.5,1.4) {$8$};
\end{tikzpicture}
\end{center}
Let $f(k)$ be the length of the
longest increasing subsequence
that ends to index $k$.
Thus, the answer for the problem
is the largest of values
$f(1),f(2),\ldots,f(n)$.
For example, in the above array
the values for the function are as follows:
\[
\begin{array}{lcl}
f(1) & = & 1 \\
f(2) & = & 1 \\
f(3) & = & 2 \\
f(4) & = & 1 \\
f(5) & = & 3 \\
f(6) & = & 2 \\
f(7) & = & 4 \\
f(8) & = & 2 \\
\end{array}
\]
When calculating the value $f(k)$,
there are two possibilities how the subsequence
that ends to index $k$ is constructed:
\begin{enumerate}
\item The subsequence
only contains the element $x_k$, so $f(k)=1$.
\item We choose some index $i$ for which $i<k$
and $x_i<x_k$.
We extend the longest increasing subsequence
that ends to index $i$ by adding the element $x_k$
to it. In this case $f(k)=f(i)+1$.
\end{enumerate}
Consider calculating the value $f(7)$.
The best solution is to extend the longest
increasing subsequence that ends to index 5,
i.e., the sequence $[2,5,7]$, by adding
the element $x_7=8$.
The result is
$[2,5,7,8]$, and $f(7)=f(5)+1=4$.
A straightforward way to calculate the
value $f(k)$ is to
go through all indices
$i=1,2,\ldots,k-1$ that can contain the
previous element in the subsequence.
The time complexity of such an algorithm is $O(n^2)$.
Surprisingly, it is also possible to solve the
problem in $O(n \log n)$ time, but this is more difficult.
\section{Path in a grid}
Our next problem is to find a path
in an $n \times n$ grid
from the upper-left corner to
the lower-right corner.
Each square contains a number,
and the path should be constructed so
that the sum of numbers along
the path is as large as possible.
In addition, it is only allowed to move
downwards and to the right.
In the followig grid, the best path is
marked with gray background:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
\fill [color=lightgray] (0, 9) rectangle (1, 8);
\fill [color=lightgray] (0, 8) rectangle (1, 7);
\fill [color=lightgray] (1, 8) rectangle (2, 7);
\fill [color=lightgray] (1, 7) rectangle (2, 6);
\fill [color=lightgray] (2, 7) rectangle (3, 6);
\fill [color=lightgray] (3, 7) rectangle (4, 6);
\fill [color=lightgray] (4, 7) rectangle (5, 6);
\fill [color=lightgray] (4, 6) rectangle (5, 5);
\fill [color=lightgray] (4, 5) rectangle (5, 4);
\draw (0, 4) grid (5, 9);
\node at (0.5,8.5) {3};
\node at (1.5,8.5) {7};
\node at (2.5,8.5) {9};
\node at (3.5,8.5) {2};
\node at (4.5,8.5) {7};
\node at (0.5,7.5) {9};
\node at (1.5,7.5) {8};
\node at (2.5,7.5) {3};
\node at (3.5,7.5) {5};
\node at (4.5,7.5) {5};
\node at (0.5,6.5) {1};
\node at (1.5,6.5) {7};
\node at (2.5,6.5) {9};
\node at (3.5,6.5) {8};
\node at (4.5,6.5) {5};
\node at (0.5,5.5) {3};
\node at (1.5,5.5) {8};
\node at (2.5,5.5) {6};
\node at (3.5,5.5) {4};
\node at (4.5,5.5) {10};
\node at (0.5,4.5) {6};
\node at (1.5,4.5) {3};
\node at (2.5,4.5) {9};
\node at (3.5,4.5) {7};
\node at (4.5,4.5) {8};
\end{scope}
\end{tikzpicture}
\end{center}
The sum of numbers is
$3+9+8+7+9+8+5+10+8=67$
that is the largest possible sum in a path
from the
upper-left corner to the lower-right corner.
A good approach for the problem is to
calculate for each square $(y,x)$
the largest possible sum in a path
from the upper-left corner to the square $(y,x)$.
We denote this sum $f(y,x)$,
so $f(n,n)$ is the largest sum in a path
from the upper-left corner to
the lower-right corner.
The recursive formula is based on the observation
that a path that ends to square$(y,x)$
can either come from square $(y,x-1)$
or from square $(y-1,x)$:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
\fill [color=lightgray] (3, 7) rectangle (4, 6);
\draw (0, 4) grid (5, 9);
\node at (2.5,6.5) {$\rightarrow$};
\node at (3.5,7.5) {$\downarrow$};
\end{scope}
\end{tikzpicture}
\end{center}
Let $r(y,x)$ denote the number in square $(y,x)$.
The base cases for the recursive function
are as follows:
\[
\begin{array}{lcl}
f(1,1) & = & r(1,1) \\
f(1,x) & = & f(1,x-1)+r(1,x) \\
f(y,1) & = & f(y-1,1)+r(y,1)\\
\end{array}
\]
In the general case there are two
possible paths, and we should select the path
that produces the larger sum:
\[ f(y,x) = \max(f(y,x-1),f(y-1,x))+r(y,x)\]
The time complexity of the solution is $O(n^2)$,
because each value $f(y,x)$ can be calculated
in constant time using the values of the
adjacent squares.
\section{Knapsack}
\index{knapsack}
\key{Knapsack} is a classic problem where we
are given $n$ objects with weights
$p_1,p_2,\ldots,p_n$ and values
$a_1,a_2,\ldots,a_n$.
Our task is to choose a subset of the objects
such that the sum of the weights is at most $x$
and the sum of the values is as large as possible.
\begin{samepage}
For example, if the objects are
\begin{center}
\begin{tabular}{rrr}
object & weight & value \\
\hline
A & 5 & 1 \\
B & 6 & 3 \\
C & 8 & 5 \\
D & 5 & 3 \\
\end{tabular}
\end{center}
\end{samepage}
and the maximum total weight is 12,
the optimal solution is to select objects $B$ and $D$.
Their total weight $6+5=11$ doesn't exceed 12,
and their total value $3+3=6$ is as large as possible.
This task is possible to solve in two different ways
using dynamic programming.
We can either regard the problem as maximizing the
total value of the objects or
minimizing the total weight of the objects.
\subsubsection{Solution 1}
\textit{Maximization:} Let $f(k,u)$
denote the largest possible total value
when a subset of objects $1 \ldots k$ is selected
such that the total weight is $u$.
The solution for the problem is
the largest value
$f(n,u)$ where $0 \le u \le x$.
A recursive formula for calculating
the function is
\[f(k,u) = \max(f(k-1,u),f(k-1,u-p_k)+a_k)\]
because we can either include or not include
object $k$ in the solution.
The base cases are $f(0,0)=0$ and $f(0,u)=-\infty$
when $u \neq 0$. The time compexity of
the solution is $O(nx)$.
In the example case, the optimal solution is
$f(4,11)=6$ that can be constructed
using the following sequence:
\[f(4,11)=f(3,6)+3=f(2,6)+3=f(1,0)+3+3=f(0,0)+3+3=6.\]
\subsubsection{Solution 2}
\textit{Minimization:} Let $f(k,u)$
denote the smallest possible total weight
when a subset of objects
$1 \ldots k$ is selected such
that the total weight is $u$.
The solution for the problem is the
largest value $u$
for which $0 \le u \le s$ and $f(n,u) \le x$
where $s=\sum_{i=1}^n a_i$.
A recursive formula for calculating the function is
\[f(k,u) = \min(f(k-1,u),f(k-1,u-a_k)+p_k).\]
as in solution 1.
The base cases are $f(0,0)=0$ and $f(0,u)=\infty$
when $u \neq 0$.
The time complexity of the solution is $O(ns)$.
In the example case, the optimal solution is $f(4,6)=11$
that can be constructed using the following sequence:
\[f(4,6)=f(3,3)+5=f(2,3)+5=f(1,0)+6+5=f(0,0)+6+5=11.\]
~\\
It is interesting to note how the features of the input
affect on the efficiency of the solutions.
The efficiency of solution 1 depends on the weights
of the objects, while the efficiency of solution 2
depends on the values of the objects.
\section{Edit distance}
\index{edit distance}
\index{Levenshtein distance}
The \key{edit distance},
also known as the \key{Levenshtein distance},
indicates how similar two strings are.
It is the minimum number of editing operations
needed for transforming the first string
into the second string.
The allowed editing operations are as follows:
\begin{itemize}
\item insert a character (e.g. \texttt{ABC} $\rightarrow$ \texttt{ABCA})
\item remove a character (e.g. \texttt{ABC} $\rightarrow$ \texttt{AC})
\item change a character (e.g. \texttt{ABC} $\rightarrow$ \texttt{ADC})
\end{itemize}
For example, the edit distance between
\texttt{LOVE} and \texttt{MOVIE} is 2
because we can first perform operation
\texttt{LOVE} $\rightarrow$ \texttt{MOVE}
(change) and then operation
\texttt{MOVE} $\rightarrow$ \texttt{MOVIE}
(insertion).
This is the smallest possible number of operations
because it is clear that one operation is not enough.
Suppose we are given strings
\texttt{x} of $n$ characters and
\texttt{y} of $m$ characters,
and we want to calculate the edit distance
between them.
This can be efficiently done using
dynamic programming in $O(nm)$ time.
Let $f(a,b)$ denote the edit distance
between the first $a$ characters of \texttt{x}
and the first $b$ characters of \texttt{y}.
Using this function, the edit distance between
\texttt{x} and \texttt{y} is $f(n,m)$,
and the function also determines
the editing operations needed.
The base cases for the function are
\[
\begin{array}{lcl}
f(0,b) & = & b \\
f(a,0) & = & a \\
\end{array}
\]
and in the general case the formula is
\[ f(a,b) = \min(f(a,b-1)+1,f(a-1,b)+1,f(a-1,b-1)+c),\]
where $c=0$ if the $a$th character of \texttt{x}
equals the $b$th character of \texttt{y},
and otherwise $c=1$.
The formula covers all ways to shorten the strings:
\begin{itemize}
\item $f(a,b-1)$ means that a character is inserted to \texttt{x}
\item $f(a-1,b)$ means that a chacater is removed from \texttt{x}
\item $f(a-1,b-1)$ means that \texttt{x} and \texttt{y} contain
the same character ($c=0$),
or a character in \texttt{x} is transformed into
a character in \texttt{y} ($c=1$)
\end{itemize}
The following table shows the values of $f$
in the example case:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
%\fill [color=lightgray] (5, -3) rectangle (6, -4);
\draw (1, -1) grid (7, -6);
\node at (0.5,-2.5) {\texttt{L}};
\node at (0.5,-3.5) {\texttt{O}};
\node at (0.5,-4.5) {\texttt{V}};
\node at (0.5,-5.5) {\texttt{E}};
\node at (2.5,-0.5) {\texttt{M}};
\node at (3.5,-0.5) {\texttt{O}};
\node at (4.5,-0.5) {\texttt{V}};
\node at (5.5,-0.5) {\texttt{I}};
\node at (6.5,-0.5) {\texttt{E}};
\node at (1.5,-1.5) {$0$};
\node at (1.5,-2.5) {$1$};
\node at (1.5,-3.5) {$2$};
\node at (1.5,-4.5) {$3$};
\node at (1.5,-5.5) {$4$};
\node at (2.5,-1.5) {$1$};
\node at (2.5,-2.5) {$1$};
\node at (2.5,-3.5) {$2$};
\node at (2.5,-4.5) {$3$};
\node at (2.5,-5.5) {$4$};
\node at (3.5,-1.5) {$2$};
\node at (3.5,-2.5) {$2$};
\node at (3.5,-3.5) {$1$};
\node at (3.5,-4.5) {$2$};
\node at (3.5,-5.5) {$3$};
\node at (4.5,-1.5) {$3$};
\node at (4.5,-2.5) {$3$};
\node at (4.5,-3.5) {$2$};
\node at (4.5,-4.5) {$1$};
\node at (4.5,-5.5) {$2$};
\node at (5.5,-1.5) {$4$};
\node at (5.5,-2.5) {$4$};
\node at (5.5,-3.5) {$3$};
\node at (5.5,-4.5) {$2$};
\node at (5.5,-5.5) {$2$};
\node at (6.5,-1.5) {$5$};
\node at (6.5,-2.5) {$5$};
\node at (6.5,-3.5) {$4$};
\node at (6.5,-4.5) {$3$};
\node at (6.5,-5.5) {$2$};
\end{scope}
\end{tikzpicture}
\end{center}
The lower-right corner of the table
indicates that the edit distance between
\texttt{LOVE} and \texttt{MOVIE} is 2.
The table also shows how to construct
the shortest sequence of editing operations.
In this case the path is as follows:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
\draw (1, -1) grid (7, -6);
\node at (0.5,-2.5) {\texttt{L}};
\node at (0.5,-3.5) {\texttt{O}};
\node at (0.5,-4.5) {\texttt{V}};
\node at (0.5,-5.5) {\texttt{E}};
\node at (2.5,-0.5) {\texttt{M}};
\node at (3.5,-0.5) {\texttt{O}};
\node at (4.5,-0.5) {\texttt{V}};
\node at (5.5,-0.5) {\texttt{I}};
\node at (6.5,-0.5) {\texttt{E}};
\node at (1.5,-1.5) {$0$};
\node at (1.5,-2.5) {$1$};
\node at (1.5,-3.5) {$2$};
\node at (1.5,-4.5) {$3$};
\node at (1.5,-5.5) {$4$};
\node at (2.5,-1.5) {$1$};
\node at (2.5,-2.5) {$1$};
\node at (2.5,-3.5) {$2$};
\node at (2.5,-4.5) {$3$};
\node at (2.5,-5.5) {$4$};
\node at (3.5,-1.5) {$2$};
\node at (3.5,-2.5) {$2$};
\node at (3.5,-3.5) {$1$};
\node at (3.5,-4.5) {$2$};
\node at (3.5,-5.5) {$3$};
\node at (4.5,-1.5) {$3$};
\node at (4.5,-2.5) {$3$};
\node at (4.5,-3.5) {$2$};
\node at (4.5,-4.5) {$1$};
\node at (4.5,-5.5) {$2$};
\node at (5.5,-1.5) {$4$};
\node at (5.5,-2.5) {$4$};
\node at (5.5,-3.5) {$3$};
\node at (5.5,-4.5) {$2$};
\node at (5.5,-5.5) {$2$};
\node at (6.5,-1.5) {$5$};
\node at (6.5,-2.5) {$5$};
\node at (6.5,-3.5) {$4$};
\node at (6.5,-4.5) {$3$};
\node at (6.5,-5.5) {$2$};
\path[draw=red,thick,-,line width=2pt] (6.5,-5.5) -- (5.5,-4.5);
\path[draw=red,thick,-,line width=2pt] (5.5,-4.5) -- (4.5,-4.5);
\path[draw=red,thick,->,line width=2pt] (4.5,-4.5) -- (1.5,-1.5);
\end{scope}
\end{tikzpicture}
\end{center}
Merkkijonojen \texttt{PALLO} ja \texttt{TALO} viimeinen merkki on sama,
joten niiden editointietäisyys on sama kuin
merkkijonojen \texttt{PALL} ja \texttt{TAL}.
Nyt voidaan poistaa viimeinen \texttt{L} merkkijonosta \texttt{PAL},
mistä tulee yksi operaatio.
Editointietäisyys on siis yhden suurempi
kuin merkkijonoilla \texttt{PAL} ja \texttt{TAL}, jne.
\section{Laatoitukset}
Joskus dynaamisen ohjelmoinnin tila on monimutkaisempi kuin
kiinteä yhdistelmä lukuja.
Tarkastelemme lopuksi tehtävää, jossa
laskettavana on, monellako tavalla
kokoa $1 \times 2$ ja $2 \times 1$ olevilla laatoilla
voi täyttää $n \times m$ -kokoisen ruudukon.
Esimerkiksi ruudukolle kokoa $4 \times 7$
yksi mahdollinen ratkaisu on
\begin{center}
\begin{tikzpicture}[scale=.65]
\draw (0,0) grid (7,4);
\draw[fill=gray] (0+0.2,0+0.2) rectangle (2-0.2,1-0.2);
\draw[fill=gray] (2+0.2,0+0.2) rectangle (4-0.2,1-0.2);
\draw[fill=gray] (4+0.2,0+0.2) rectangle (6-0.2,1-0.2);
\draw[fill=gray] (0+0.2,1+0.2) rectangle (2-0.2,2-0.2);
\draw[fill=gray] (2+0.2,1+0.2) rectangle (4-0.2,2-0.2);
\draw[fill=gray] (1+0.2,2+0.2) rectangle (3-0.2,3-0.2);
\draw[fill=gray] (1+0.2,3+0.2) rectangle (3-0.2,4-0.2);
\draw[fill=gray] (4+0.2,3+0.2) rectangle (6-0.2,4-0.2);
\draw[fill=gray] (0+0.2,2+0.2) rectangle (1-0.2,4-0.2);
\draw[fill=gray] (3+0.2,2+0.2) rectangle (4-0.2,4-0.2);
\draw[fill=gray] (6+0.2,2+0.2) rectangle (7-0.2,4-0.2);
\draw[fill=gray] (4+0.2,1+0.2) rectangle (5-0.2,3-0.2);
\draw[fill=gray] (5+0.2,1+0.2) rectangle (6-0.2,3-0.2);
\draw[fill=gray] (6+0.2,0+0.2) rectangle (7-0.2,2-0.2);
\end{tikzpicture}
\end{center}
ja ratkaisujen yhteismäärä on 781.
Tehtävän voi ratkaista dynaamisella ohjelmoinnilla
käymällä ruudukkoa läpi rivi riviltä.
Jokainen ratkaisun rivi pelkistyy merkkijonoksi,
jossa on $m$ merkkiä joukosta $\{\sqcap, \sqcup, \sqsubset, \sqsupset \}$.
Esimerkiksi yllä olevassa ratkaisussa on 4 riviä,
jotka vastaavat merkkijonoja
\begin{itemize}
\item
$\sqcap \sqsubset \sqsupset \sqcap \sqsubset \sqsupset \sqcap$,
\item
$\sqcup \sqsubset \sqsupset \sqcup \sqcap \sqcap \sqcup$,
\item
$\sqsubset \sqsupset \sqsubset \sqsupset \sqcup \sqcup \sqcap$ ja
\item
$\sqsubset \sqsupset \sqsubset \sqsupset \sqsubset \sqsupset \sqcup$.
\end{itemize}
Tehtävään sopiva rekursiivinen funktio on $f(k,x)$,
joka laskee, montako tapaa on muodostaa ratkaisu
ruudukon riveille $1 \ldots k$ niin,
että riviä $k$ vastaa merkkijono $x$.
Dynaaminen ohjelmointi on mahdollista,
koska jokaisen rivin sisältöä
rajoittaa vain edellisen rivin sisältö.
Riveistä muodostuva ratkaisu on kelvollinen,
jos rivillä 1 ei ole merkkiä $\sqcup$,
rivillä $n$ ei ole merkkiä $\sqcap$
ja kaikki peräkkäiset rivit ovat \emph{yhteensopivat}.
Esimerkiksi rivit
$\sqcup \sqsubset \sqsupset \sqcup \sqcap \sqcap \sqcup$ ja
$\sqsubset \sqsupset \sqsubset \sqsupset \sqcup \sqcup \sqcap$
ovat yhteensopivat,
kun taas rivit
$\sqcap \sqsubset \sqsupset \sqcap \sqsubset \sqsupset \sqcap$ ja
$\sqsubset \sqsupset \sqsubset \sqsupset \sqsubset \sqsupset \sqcup$
eivät ole yhteensopivat.
Koska rivillä on $m$ merkkiä ja jokaiselle merkille on 4
vaihtoehtoa, erilaisia rivejä on korkeintaan $4^m$.
Niinpä ratkaisun aikavaativuus on $O(n 4^{2m})$,
koska joka rivillä käydään läpi $O(4^m)$
vaihtoehtoa rivin sisällölle
ja jokaista vaihtoehtoa kohden on $O(4^m)$
vaihtoehtoa edellisen rivin sisällölle.
Käytännössä ruudukko kannattaa kääntää niin
päin, että pienempi sivun pituus on $m$:n roolissa,
koska $m$:n suuruus on ratkaiseva ajankäytön kannalta.
Ratkaisua on mahdollista tehostaa parantamalla rivien esitystapaa merkkijonoina.
Osoittautuu, että ainoa seuraavalla rivillä tarvittava tieto on,
missä kohdissa riviltä lähtee laattoja alaspäin.
Niinpä rivin voikin tallentaa käyttäen vain merkkejä
$\sqcap$ ja $\Box$, missä $\Box$ kokoaa yhteen vanhat merkit
$\sqcup$, $\sqsubset$ ja $\sqsupset$.
Tällöin erilaisia rivejä on vain $2^m$
ja aikavaativuudeksi tulee $O(n 2^{2m})$.
Mainittakoon lopuksi, että laatoitusten määrän laskemiseen
on myös yllättävä suora kaava
\[ \prod_{a=1}^{\lceil n/2 \rceil} \prod_{b=1}^{\lceil m/2 \rceil} 4 \cdot (\cos^2 \frac{\pi a}{n + 1} + \cos^2 \frac{\pi b}{m+1}).\]
Tämä kaava on sinänsä hyvin tehokas,
koska se laskee laatoitusten määrän ajassa $O(nm)$,
mutta käytännön ongelma kaavan käyttämisessä
on, kuinka tallentaa välitulokset riittävän tarkkoina lukuina.