cphb/luku21.tex

713 lines
20 KiB
TeX

\chapter{Number theory}
\index{number theory}
\key{Number theory} is a branch of mathematics
that studies integers.
Number theory is a fascinating field,
because many questions involving integers
are very difficult to solve even if they
seem simple at first glance.
As an example, let's consider the following equation:
\[x^3 + y^3 + z^3 = 33\]
It's easy to find three real numbers $x$, $y$ and $z$
that satisfy the equation.
For example, we can choose
\[
\begin{array}{lcl}
x = 3, \\
y = \sqrt[3]{3}, \\
z = \sqrt[3]{3}.\\
\end{array}
\]
However, nobody knows if there are any three
\emph{integers} $x$, $y$ and $z$
that would satisfy the equation, but this
is an open problem in number theory.
In this chapter, we will focus on basic concepts
and algorithms in number theory.
We will start by discussing divisibility of numbers
and important algorithms for primality testing
and factorization.
\section{Primes and factors}
\index{divisibility}
\index{factor}
\index{divisor}
A number $a$ is a \key{factor} or \key{divisor} of a number $b$
if $b$ is divisible by $a$.
If $a$ is a factor of $b$,
we write $a \mid b$, and otherwise we write $a \nmid b$.
For example, the factors of the number 24 are
1, 2, 3, 4, 6, 8, 12 and 24.
\index{prime}
\index{prime decomposition}
A number $n>1$ is a \key{prime}
if its only positive factors are 1 and $n$.
For example, the numbers 7, 19 and 41 are primes.
The number 35 is not a prime because it can be
divided into factors $5 \cdot 7 = 35$.
For each number $n>1$, there is a unique
\key{prime factorization}
\[ n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},\]
where $p_1,p_2,\ldots,p_k$ are primes and
$\alpha_1,\alpha_2,\ldots,\alpha_k$ are positive numbers.
For example, the prime factorization for the number 84 is
\[84 = 2^2 \cdot 3^1 \cdot 7^1.\]
The \key{number of factors} of a number $n$ is
\[\tau(n)=\prod_{i=1}^k (\alpha_i+1),\]
because for each prime $p_i$, there are
$\alpha_i+1$ ways to choose how many times
it appears in the factor.
For example, the number of factors
of the number 84 is
$\tau(84)=3 \cdot 2 \cdot 2 = 12$.
The factors are
1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84.
The \key{sum of factors} of $n$ is
\[\sigma(n)=\prod_{i=1}^k (1+p_i+\ldots+p_i^{\alpha_i}) = \prod_{i=1}^k \frac{p_i^{a_i+1}-1}{p_i-1},\]
where the latter form is based on the geometric sum formula.
For example, the sum of factors of the number 84 is
\[\sigma(84)=\frac{2^3-1}{2-1} \cdot \frac{3^2-1}{3-1} \cdot \frac{7^2-1}{7-1} = 7 \cdot 4 \cdot 8 = 224.\]
The \key{product of factors} of $n$ is
\[\mu(n)=n^{\tau(n)/2},\]
because we can form $\tau(n)/2$ pairs from the factors,
each with product $n$.
For example, the factors of the number 84
produce the pairs
$1 \cdot 84$, $2 \cdot 42$, $3 \cdot 28$, etc.,
and the product of the factors is $\mu(84)=84^6=351298031616$.
\index{perfect number}
A number $n$ is \key{perfect} if $n=\sigma(n)-n$,
i.e., the number equals the sum of its divisors
between $1 \ldots n-1$.
For example, the number 28 is perfect because
it equals the sum $1+2+4+7+14$.
\subsubsection{Number of primes}
It is easy to show that there is an infinite number
of primes.
If the number would be finite,
we could construct a set $P=\{p_1,p_2,\ldots,p_n\}$
that contains all the primes.
For example, $p_1=2$, $p_2=3$, $p_3=5$, and so on.
However, using this set, we could form a new prime
\[p_1 p_2 \cdots p_n+1\]
that is larger than all elements in $P$.
This is a contradiction, and the number of the primes
has to be infinite.
\subsubsection{Density of primes}
The density of primes means how often there are primes
among the numbers.
Let $\pi(n)$ denote the number of primes between
$1 \ldots n$. For example, $\pi(10)=4$ because
there are 4 primes between $1 \ldots 10$: 2, 3, 5 and 7.
It's possible to show that
\[\pi(n) \approx \frac{n}{\ln n},\]
which means that primes appear quite often.
For example, the number of primes between
$1 \ldots 10^6$ is $\pi(10^6)=78498$,
and $10^6 / \ln 10^6 \approx 72382$.
\subsubsection{Conjectures}
There are many \emph{conjectures} involving primes.
Most people think that the conjectures are true,
but nobody has been able to prove them.
For example, the following conjectures are famous:
\begin{itemize}
\index{Goldbach's conjecture}
\item \key{Goldbach's conjecture}:
Each even integer $n>2$ can be represented as a
sum $n=a+b$ so that both $a$ and $b$ are primes.
\index{twin prime}
\item \key{twin prime}:
There is an infinite number of pairs
of the form $\{p,p+2\}$,
where both $p$ and $p+2$ are primes.
\index{Legendre's conjecture}
\item \key{Legendre's conjecture}:
There is always a prime between numbers
$n^2$ and $(n+1)^2$, where $n$ is any positive integer.
\end{itemize}
\subsubsection{Basic algorithms}
If a number $n$ is not prime,
it can be represented as a product $a \cdot b$,
where $a \le \sqrt n$ or $b \le \sqrt n$,
so it certainly has a factor between $2 \ldots \sqrt n$.
Using this observation, we can both test
if a number is prime and find the prime factorization
of a number in $O(\sqrt n)$ time.
The following function \texttt{prime} checks
if the given number $n$ is prime.
The function tries to divide the number by
all numbers between $2 \ldots \sqrt n$,
and if none of them divides $n$, then $n$ is prime.
\begin{lstlisting}
bool prime(int n) {
if (n < 2) return false;
for (int x = 2; x*x <= n; x++) {
if (n%x == 0) return false;
}
return true;
}
\end{lstlisting}
\noindent
The following function \texttt{factors}
constructs a vector that contains the prime
factorization of $n$.
The function divides $n$ by its prime factors,
and adds them to the vector.
The process ends when the remaining number $n$
has no factors between $2 \ldots \sqrt n$.
If $n>1$, it is prime and the last factor.
\begin{lstlisting}
vector<int> factors(int n) {
vector<int> f;
for (int x = 2; x*x <= n; x++) {
while (n%x == 0) {
f.push_back(x);
n /= x;
}
}
if (n > 1) f.push_back(n);
return f;
}
\end{lstlisting}
Note that each prime factor appears in the vector
as many times as it divides the number.
For example, $24=2^3 \cdot 3$,
so the result of the function is $[2,2,2,3]$.
\subsubsection{Sieve of Eratosthenes}
\index{sieve of Eratosthenes}
The \key{sieve of Eratosthenes} is a preprocessing
algorithm that builds an array using which we
can efficiently check if a given number between $2 \ldots n$
is prime and find one prime factor of the number.
The algorithm builds an array $\texttt{a}$
where indices $2,3,\ldots,n$ are used.
The value $\texttt{a}[k]=0$ means
that $k$ is prime,
and the value $\texttt{a}[k] \neq 0$
means that $k$ is not a prime but one
of its prime factors is $\texttt{a}[k]$.
The algorithm iterates through the numbers
$2 \ldots n$ one by one.
Always when a new prime $x$ is found,
the algorithm records that the multiples
of $x$ ($2x,3x,4x,\ldots$) are not primes
because the number $x$ divides them.
For example, if $n=20$, the array becomes:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (19,1);
\node at (0.5,0.5) {$0$};
\node at (1.5,0.5) {$0$};
\node at (2.5,0.5) {$2$};
\node at (3.5,0.5) {$0$};
\node at (4.5,0.5) {$3$};
\node at (5.5,0.5) {$0$};
\node at (6.5,0.5) {$2$};
\node at (7.5,0.5) {$3$};
\node at (8.5,0.5) {$5$};
\node at (9.5,0.5) {$0$};
\node at (10.5,0.5) {$3$};
\node at (11.5,0.5) {$0$};
\node at (12.5,0.5) {$7$};
\node at (13.5,0.5) {$5$};
\node at (14.5,0.5) {$2$};
\node at (15.5,0.5) {$0$};
\node at (16.5,0.5) {$3$};
\node at (17.5,0.5) {$0$};
\node at (18.5,0.5) {$5$};
\footnotesize
\node at (0.5,1.5) {$2$};
\node at (1.5,1.5) {$3$};
\node at (2.5,1.5) {$4$};
\node at (3.5,1.5) {$5$};
\node at (4.5,1.5) {$6$};
\node at (5.5,1.5) {$7$};
\node at (6.5,1.5) {$8$};
\node at (7.5,1.5) {$9$};
\node at (8.5,1.5) {$10$};
\node at (9.5,1.5) {$11$};
\node at (10.5,1.5) {$12$};
\node at (11.5,1.5) {$13$};
\node at (12.5,1.5) {$14$};
\node at (13.5,1.5) {$15$};
\node at (14.5,1.5) {$16$};
\node at (15.5,1.5) {$17$};
\node at (16.5,1.5) {$18$};
\node at (17.5,1.5) {$19$};
\node at (18.5,1.5) {$20$};
\end{tikzpicture}
\end{center}
The following code implements the sieve of
Eratosthenes.
The code assumes that each element in
\texttt{a} is initially zero.
\begin{lstlisting}
for (int x = 2; x <= n; x++) {
if (a[x]) continue;
for (int u = 2*x; u <= n; u += x) {
a[u] = x;
}
}
\end{lstlisting}
The inner loop of the algorithm will be executed
$n/x$ times for any $x$.
Thus, an upper bound for the running time
of the algorithm is the harmonic sum
\index{harmonic sum}
\[\sum_{x=2}^n n/x = n/2 + n/3 + n/4 + \cdots + n/n = O(n \log n).\]
In fact, the algorithm is even more efficient
because the inner loop will be executed only if
the number $x$ is prime.
It can be shown that the time complexity of the
algorithm is only $O(n \log \log n)$
that is very near to $O(n)$.
\subsubsection{Euclid's algorithm}
\index{greatest common divisor}
\index{least common multiple}
\index{Euclid's algorithm}
The \key{greatest common divisor} of
numbers $a$ and $b$, $\gcd(a,b)$,
is the greatest number that divides both $a$ and $b$,
and the \key{least common multiple} of
$a$ and $b$, $\textrm{lcm}(a,b)$,
is the smallest number that is divisible by
both $a$ and $b$.
For example,
$\gcd(24,36)=12$ and
$\textrm{lcm}(24,36)=72$.
The greatest common divisor and the least common multiple
are connected as follows:
\[\textrm{lcm}(a,b)=\frac{ab}{\textrm{gcd}(a,b)}\]
\key{Euclid's algorithm} provides an efficient way
to find the greatest common divisor of two numbers.
The algorithm is based on the formula
\begin{equation*}
\textrm{gcd}(a,b) = \begin{cases}
a & b = 0\\
\textrm{gcd}(b,a \bmod b) & b \neq 0\\
\end{cases}
\end{equation*}
For example,
\[\textrm{gcd}(24,36) = \textrm{gcd}(36,24)
= \textrm{gcd}(24,12) = \textrm{gcd}(12,0)=12.\]
The time complexity of Euclid's algorithm
is $O(\log n)$ where $n=\min(a,b)$.
The worst case is when
$a$ and $b$ are successive Fibonacci numbers.
In this case, the algorithm goes through
all smaller Fibonacci numbers.
For example,
\[\textrm{gcd}(13,8)=\textrm{gcd}(8,5)
=\textrm{gcd}(5,3)=\textrm{gcd}(3,2)=\textrm{gcd}(2,1)=\textrm{gcd}(1,0)=1.\]
\subsubsection{Euler's totient function}
\index{coprime}
\index{Euler's totient function}
Numbers $a$ and $b$ are coprime
if $\textrm{gcd}(a,b)=1$.
\key{Euler's totient function} $\varphi(n)$
returns the number of coprime numbers to $n$
between $1 \ldots n$.
For example, $\varphi(12)=4$,
because the numbers 1, 5, 7 and 11
are coprime to the number 12.
The value of $\varphi(n)$ can be calculated
using the prime factorization of $n$
by the formula
\[ \varphi(n) = \prod_{i=1}^k p_i^{\alpha_i-1}(p_i-1). \]
For example, $\varphi(12)=2^1 \cdot (2-1) \cdot 3^0 \cdot (3-1)=4$.
Note that $\varphi(n)=n-1$ if $n$ is prime.
\section{Modular arithmetic}
\index{modular arithmetic}
In \key{modular arithmetic},
the set of available numbers is restricted so
that only numbers $0,1,2,\ldots,m-1$ can be used
where $m$ is a constant.
Each number $x$ is
represented by the number $x \bmod m$:
the remainder after dividing $x$ by $m$.
For example, if $m=17$, then $75$
is represented by $75 \bmod 17 = 7$.
Often we can take the remainder before doing a
calculation.
In particular, the following formulas can be used:
\[
\begin{array}{rcl}
(x+y) \bmod m & = & (x \bmod m + y \bmod m) \bmod m \\
(x-y) \bmod m & = & (x \bmod m - y \bmod m) \bmod m \\
(x \cdot y) \bmod m & = & (x \bmod m \cdot y \bmod m) \bmod m \\
(x^k) \bmod m & = & (x \bmod m)^k \bmod m \\
\end{array}
\]
\subsubsection{Modular exponentiation}
Often there is need to efficiently calculate
the remainder of $x^n$.
This can be done in $O(\log n)$ time
using the following recursion:
\begin{equation*}
x^n = \begin{cases}
1 & n = 0\\
x^{n/2} \cdot x^{n/2} & \text{$n$ is even}\\
x^{n-1} \cdot x & \text{$n$ is odd}
\end{cases}
\end{equation*}
It's important that in the case of an even $n$,
the number $x^{n/2}$ is calculated only once.
This guarantees that the time complexity of the
algorithm is $O(\log n)$ because $n$ is always halved
when it is even.
The following function calculates the number
$x^n \bmod m$:
\begin{lstlisting}
int modpow(int x, int n, int m) {
if (n == 0) return 1%m;
int u = modpow(x,n/2,m);
u = (u*u)%m;
if (n%2 == 1) u = (u*x)%m;
return u;
}
\end{lstlisting}
\subsubsection{Fermat's theorem and Euler's theorem}
\index{Fermat's theorem}
\index{Euler's theorem}
\key{Fermat's theorem} states that
\[x^{m-1} \bmod m = 1,\]
when $m$ is prime and $x$ and $m$ are coprime.
This also yields
\[x^k \bmod m = x^{k \bmod (m-1)} \bmod m.\]
More generally, \key{Euler's theorem} states that
\[x^{\varphi(m)} \bmod m = 1,\]
when $x$ and $m$ are coprime.
Fermat's theorem follows from Euler's theorem,
because if $m$ is a prime, then $\varphi(m)=m-1$.
\subsubsection{Modular inverse}
\index{modular inverse}
The modular inverse of $x$ modulo $m$
is a number $x^{-1}$ such that
\[ x x^{-1} \bmod m = 1. \]
For example, if $x=6$ and $m=17$,
then $x^{-1}=3$, because $6\cdot3 \bmod 17=1$.
Using modular inverses, we can do divisions
for remainders, because division by $x$
corresponds to multiplication by $x^{-1}$.
For example, to evaluate the value of $36/6 \bmod 17$,
we can use the formula $2 \cdot 3 \bmod 17$,
because $36 \bmod 17 = 2$ and $6^{-1} \bmod 17 = 3$.
However, a modular inverse doesn't always exist.
For example, if $x=2$ and $m=4$, the equation
\[ x x^{-1} \bmod m = 1. \]
can't be solved, because all multiples of the number 2
are even, and the remainder can never be 1.
It turns out that the number $x^{-1} \bmod m$ exists
exactly when $x$ and $m$ are coprime.
If a modular inverse exists, it can be
calculated using the formula
\[
x^{-1} = x^{\varphi(m)-1}.
\]
If $m$ is prime, the formula becomes
\[
x^{-1} = x^{m-2}.
\]
For example, if $x=6$ and $m=17$, then
\[x^{-1}=6^{17-2} \bmod 17 = 3.\]
Using this formula, we can calculate the modular inverse
efficiently using the modular exponentation algorithm.
The above formula can be derived using Euler's theorem.
First, the modular inverse should satisfy the following equation:
\[
x x^{-1} \bmod m = 1.
\]
On the other hand, according to Euler's theorem,
\[
x^{\varphi(m)} \bmod m = xx^{\varphi(m)-1} \bmod m = 1,
\]
so the numbers $x^{-1}$ and $x^{\varphi(m)-1}$ are equal.
\subsubsection{Computer arithmetic}
In a computers, unsigned integers are represented modulo $2^k$
where $k$ is the number of bits.
A usual consequence of this is that a number wraps around
if it becomes too large.
For example, in C++, numbers of type \texttt{unsigned int}
are represented modulo $2^{32}$.
The following code defines an \texttt{unsigned int}
variable whose value is $123456789$.
After this, the value will be multiplied by itself,
and the result is
$123456789^2 \bmod 2^{32} = 2537071545$.
\begin{lstlisting}
unsigned int x = 123456789;
cout << x*x << "\n"; // 2537071545
\end{lstlisting}
\section{Yhtälönratkaisu}
\index{Diofantoksen yhtxlz@Diofantoksen yhtälö}
\key{Diofantoksen yhtälö} on muotoa
\[ ax + by = c, \]
missä $a$, $b$ ja $c$ ovat vakioita
ja tehtävänä on ratkaista muuttujat $x$ ja $y$.
Jokaisen yhtälössä esiintyvän luvun tulee
olla kokonaisluku.
Esimerkiksi jos yhtälö on $5x+2y=11$, yksi ratkaisu
on valita $x=3$ ja $y=-2$.
\index{Eukleideen algoritmi@Eukleideen algoritmi}
Diofantoksen yhtälön voi ratkaista
tehokkaasti Eukleideen algoritmin avulla,
koska Eukleideen algoritmia laajentamalla
pystyy löytämään luvun $\textrm{syt}(a,b)$
lisäksi luvut $x$ ja $y$,
jotka toteuttavat yhtälön
\[
ax + by = \textrm{syt}(a,b).
\]
Diofantoksen yhtälön ratkaisu on olemassa, jos $c$ on
jaollinen $\textrm{syt}(a,b)$:llä,
ja muussa tapauksessa yhtälöllä ei ole ratkaisua.
\index{laajennettu Eukleideen algoritmi@laajennettu Eukleideen algoritmi}
\subsubsection*{Laajennettu Eukleideen algoritmi}
Etsitään esimerkkinä luvut $x$ ja $y$,
jotka toteuttavat yhtälön
\[
39x + 15y = 12.
\]
Yhtälöllä on ratkaisu, koska $\textrm{syt}(39,15)=3$
ja $3 \mid 12$.
Kun Eukleideen algoritmi laskee lukujen
39 ja 15 suurimman
yhteisen tekijän, syntyy ketju
\[
\textrm{syt}(39,15) = \textrm{syt}(15,9)
= \textrm{syt}(9,6) = \textrm{syt}(6,3)
= \textrm{syt}(3,0) = 3. \]
Algoritmin aikana muodostuvat jakoyhtälöt ovat:
\[
\begin{array}{lcl}
39 - 2 \cdot 15 & = & 9 \\
15 - 1 \cdot 9 & = & 6 \\
9 - 1 \cdot 6 & = & 3 \\
\end{array}
\]
Näiden yhtälöiden avulla saadaan
\[
39 \cdot 2 + 15 \cdot (-5) = 3
\]
ja kertomalla yhtälö 4:lla tuloksena on
\[
39 \cdot 8 + 15 \cdot (-20) = 12,
\]
joten alkuperäisen yhtälön ratkaisu on $x=8$ ja $y=-20$.
Diofantoksen yhtälön ratkaisu ei ole yksikäsitteinen,
vaan yhdestä ratkaisusta on mahdollista muodostaa
äärettömästi muita ratkaisuja.
Kun yhtälön ratkaisu on $(x,y)$,
niin myös
\[(x+\frac{kb}{\textrm{syt}(a,b)},y-\frac{ka}{\textrm{syt}(a,b)})\]
on ratkaisu, missä $k$ on mikä tahansa kokonaisluku.
\subsubsection{Kiinalainen jäännöslause}
\index{kiinalainen jxxnnzslause@kiinalainen jäännöslause}
\key{Kiinalainen jäännöslause} ratkaisee yhtälöryhmän muotoa
\[
\begin{array}{lcl}
x & = & a_1 \bmod m_1 \\
x & = & a_2 \bmod m_2 \\
\cdots \\
x & = & a_n \bmod m_n \\
\end{array}
\]
missä kaikki parit luvuista $m_1,m_2,\ldots,m_n$
ovat suhteellisia alkulukuja.
Olkoon $x^{-1}_m$ luvun $x$ käänteisluku
modulo $m$ ja
\[ X_k = \frac{m_1 m_2 \cdots m_n}{m_k}.\]
Näitä merkintöjä käyttäen yhtälöryhmän ratkaisu on
\[x = a_1 X_1 {X_1}^{-1}_{m_1} + a_2 X_2 {X_2}^{-1}_{m_2} + \cdots + a_n X_n {X_n}^{-1}_{m_n}.\]
Tässä ratkaisussa jokaiselle luvulle $k=1,2,\ldots,n$
pätee, että
\[a_k X_k {X_k}^{-1}_{m_k} \bmod m_k = a_k,\]
sillä
\[X_k {X_k}^{-1}_{m_k} \bmod m_k = 1.\]
Koska kaikki muut summan osat ovat jaollisia luvulla
$m_k$, ne eivät vaikuta jakojäännökseen ja
koko summan jakojäännös $m_k$:lla on $a_k$.
Esimerkiksi yhtälöryhmän
\[
\begin{array}{lcl}
x & = & 3 \bmod 5 \\
x & = & 4 \bmod 7 \\
x & = & 2 \bmod 3 \\
\end{array}
\]
ratkaisu on
\[ 3 \cdot 21 \cdot 1 + 4 \cdot 15 \cdot 1 + 2 \cdot 35 \cdot 2 = 263.\]
Kun yksi ratkaisu $x$ on löytynyt,
sen avulla voi muodostaa äärettömästi
erilaisia ratkaisuja, koska kaikki luvut muotoa
\[x+m_1 m_2 \cdots m_n\]
ovat ratkaisuja.
\section{Muita tuloksia}
\subsubsection{Lagrangen lause}
\index{Lagrangen lause@Lagrangen lause}
\key{Lagrangen lauseen} mukaan jokainen positiivinen kokonaisluku voidaan
esittää neljän neliöluvun summana eli muodossa $a^2+b^2+c^2+d^2$.
Esimerkiksi luku 123 voidaan esittää muodossa $8^2+5^2+5^2+3^2$.
\subsubsection{Zeckendorfin lause}
\index{Zeckendorfin lause@Zeckendorfin lause}
\index{Fibonaccin luku@Fibonaccin luku}
\key{Zeckendorfin lauseen} mukaan
jokaiselle positiiviselle kokonaisluvulle
on olemassa yksikäsitteinen esitys
Fibonaccin lukujen summana niin, että
mitkään kaksi lukua eivät ole samat eivätkä peräkkäiset
Fibonaccin luvut.
Esimerkiksi luku 74 voidaan esittää muodossa
$55+13+5+1$.
\subsubsection{Pythagoraan kolmikot}
\index{Pythagoraan kolmikko@Pythagoraan kolmikko}
\index{Eukleideen kaava@Eukleideen kaava}
\key{Pythagoraan kolmikko} on lukukolmikko $(a,b,c)$,
joka toteuttaa Pythagoraan lauseen $a^2+b^2=c^2$
eli $a$, $b$ ja $c$ voivat olla suorakulmaisen
kolmion sivujen pituudet.
Esimerkiksi $(3,4,5)$ on Pythagoraan kolmikko.
Jos $(a,b,c)$ on Pythagoraan kolmikko,
niin myös kaikki kolmikot muotoa $(ka,kb,kc)$
ovat Pythagoraan kolmikoita,
missä $k>1$.
Pythagoraan kolmikko on \key{primitiivinen},
jos $a$, $b$ ja $c$ ovat suhteellisia alkulukuja,
ja primitiivisistä kolmikoista voi muodostaa
kaikki muut kolmikot kertoimen $k$ avulla.
\key{Eukleideen kaavan} mukaan jokainen primitiivinen
Pythagoraan kolmikko on muotoa
\[(n^2-m^2,2nm,n^2+m^2),\]
missä $0<m<n$, $n$ ja $m$ ovat suhteelliset
alkuluvut ja ainakin toinen luvuista $n$ ja $m$ on parillinen.
Esimerkiksi valitsemalla $m=1$ ja $n=2$ syntyy
pienin mahdollinen Pythagoraan kolmikko
\[(2^2-1^2,2\cdot2\cdot1,2^2+1^2)=(3,4,5).\]
\subsubsection{Wilsonin lause}
\index{Wilsonin lause@Wilsonin lause}
\key{Wilsonin lauseen} mukaan luku $n$ on alkuluku
tarkalleen silloin, kun
\[(n-1)! \bmod n = n-1.\]
Esimerkiksi luku 11 on alkuluku, koska
\[10! \bmod 11 = 10,\]
ja luku 12 ei ole alkuluku, koska
\[11! \bmod 12 = 0 \neq 11.\]
Wilsonin lauseen avulla voi siis tutkia, onko luku alkuluku.
Tämä ei ole kuitenkaan käytännössä hyvä tapa,
koska luvun $(n-1)!$ laskeminen on työlästä,
jos $n$ on suuri luku.