cphb/list.tex

236 lines
7.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\begin{thebibliography}{9}
\bibitem{aho83}
A. V. Aho, J. E. Hopcroft and J. Ullman.
\emph{Data Structures and Algorithms},
Addison-Wesley, 1983.
\bibitem{ahu91}
R. K. Ahuja and J. B. Orlin.
Distance directed augmenting path algorithms for maximum flow and parametric maximum flow problems.
\emph{Naval Research Logistics}, 38(3):413--430, 1991.
\bibitem{and79}
A. M. Andrew.
Another efficient algorithm for convex hulls in two dimensions.
\emph{Information Processing Letters}, 9(5):216--219, 1979.
\bibitem{asp79}
B. Aspvall, M. F. Plass and R. E. Tarjan.
A linear-time algorithm for testing the truth of certain quantified boolean formulas.
\emph{Information Processing Letters}, 8(3):121--123, 1979.
\bibitem{bel58}
R. Bellman.
On a routing problem.
\emph{Quarterly of Applied Mathematics}, 16(1):87--90, 1958.
\bibitem{ben00}
M. A. Bender and M. Farach-Colton.
The LCA problem revisited. In
\emph{Latin American Symposium on Theoretical Informatics}, 88--94, 2000.
\bibitem{ben86}
J. Bentley.
\emph{Programming Pearls}.
Addison-Wesley, 1986.
\bibitem{cod15}
Codeforces: On ''Mo's algorithm'',
\url{http://codeforces.com/blog/entry/20032}
\bibitem{dij59}
E. W. Dijkstra.
A note on two problems in connexion with graphs.
\emph{Numerische Mathematik}, 1(1):269--271, 1959.
\bibitem{dir52}
G. A. Dirac.
Some theorems on abstract graphs.
\emph{Proceedings of the London Mathematical Society}, 3(1):69--81, 1952.
\bibitem{edm65}
J. Edmonds.
Paths, trees, and flowers.
\emph{Canadian Journal of Mathematics}, 17(3):449--467, 1965.
\bibitem{edm72}
J. Edmonds and R. M. Karp.
Theoretical improvements in algorithmic efficiency for network flow problems.
\emph{Journal of the ACM}, 19(2):248--264, 1972.
\bibitem{eve75}
S. Even, A. Itai and A. Shamir.
On the complexity of time table and multi-commodity flow problems.
\emph{16th Annual Symposium on Foundations of Computer Science}, 184--193, 1975.
\bibitem{fan94}
D. Fanding.
A faster algorithm for shortest-path -- SPFA.
\emph{Journal of Southwest Jiaotong University}, 2, 1994.
\bibitem{fen94}
P. M. Fenwick.
A new data structure for cumulative frequency tables.
\emph{Software: Practice and Experience}, 24(3):327--336, 1994.
\bibitem{fis06}
J. Fischer and V. Heun.
Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE.
In \emph{Annual Symposium on Combinatorial Pattern Matching}, 36--48, 2006.
\bibitem{flo62}
R. W. Floyd
Algorithm 97: shortest path.
\emph{Communications of the ACM}, 5(6):345, 1962.
\bibitem{for56}
L. R. Ford and D. R. Fulkerson.
Maximal flow through a network.
\emph{Canadian Journal of Mathematics}, 8(3):399--404, 1956.
\bibitem{gal14}
F. Le Gall.
Powers of tensors and fast matrix multiplication.
In \emph{Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation},
296--303, 2014.
\bibitem{gar79}
M. R. Garey and D. S. Johnson.
\emph{Computers and Intractability:
A Guide to the Theory of NP-Completeness},
W. H. Freeman and Company, 1979.
\bibitem{goo16}
Google Code Jam Statistics (2016),
\url{https://www.go-hero.net/jam/16}
\bibitem{gro14}
A. Grønlund and S. Pettie.
Threesomes, degenerates, and love triangles.
\emph{2014 IEEE 55th Annual Symposium on Foundations of Computer Science},
621--630, 2014.
\bibitem{gus97}
D. Gusfield.
\emph{Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology},
Cambridge University Press, 1997.
\bibitem{hel62}
M. Held and R. M. Karp.
A dynamic programming approach to sequencing problems.
\emph{Journal of the Society for Industrial and Applied Mathematics}, 10(1):196--210, 1962.
\bibitem{hie73}
C. Hierholzer and C. Wiener.
Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.
\emph{Mathematische Annalen}, 6(1), 30--32, 1873.
\bibitem{hop71}
J. E. Hopcroft and J. D. Ullman.
A linear list merging algorithm.
Technical report, Cornell University, 1971.
\bibitem{hor74}
E. Horowitz and S. Sahni.
Computing partitions with applications to the knapsack problem.
\emph{Journal of the ACM}, 21(2):277--292, 1974.
\bibitem{huf52}
D. A. Huffman.
A method for the construction of minimum-redundancy codes.
\emph{Proceedings of the IRE}, 40(9):1098--1101, 1952.
\bibitem{iois}
The International Olympiad in Informatics Syllabus, available at
\url{https://people.ksp.sk/~misof/ioi-syllabus/}
\bibitem{kar87}
R. M. Karp and M. O. Rabin.
Efficient randomized pattern-matching algorithms.
\emph{IBM Journal of Research and Development}, 31(2):249--260, 1987.
\bibitem{kas61}
P. W. Kasteleyn.
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
\emph{Physica}, 27(12):1209--1225, 1961.
\bibitem{knu982}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 2: Seminumerical Algorithms}, AddisonWesley, 1998 (3rd edition).
\bibitem{knu983}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 3: Sorting and Searching}, AddisonWesley, 1998 (2nd edition).
\bibitem{kru56}
J. B. Kruskal.
On the shortest spanning subtree of a graph and the traveling salesman problem.
\emph{Proceedings of the American Mathematical Society}, 7(1):48--50, 1956.
\bibitem{lev66}
V. I. Levenshtein.
Binary codes capable of correcting deletions, insertions, and reversals.
\emph{Soviet physics doklady}, 10(8):707--710, 1966.
\bibitem{mai84}
M. G. Main and R. J. Lorentz.
An $O(n \log n)$ algorithm for finding all repetitions in a string.
\emph{Journal of Algorithms}, 5(3):422--432, 1984.
\bibitem{ore60}
Ø. Ore.
Note on Hamilton circuits.
\emph{The American Mathematical Monthly}, 67(1):55, 1960.
\bibitem{pac13}
J. Pachocki and J. Radoszweski.
Where to use and how not to use polynomial string hashing.
\emph{Olympiads in Informatics}, 7(1):90--100, 2013.
\bibitem{pri57}
R. C. Prim.
Shortest connection networks and some generalizations.
\emph{Bell System Technical Journal}, 36(6):1389--1401, 1957.
\bibitem{q27}
27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
\url{https://github.com/preusser/q27}
\bibitem{sha81}
M. Sharir.
A strong-connectivity algorithm and its applications in data flow analysis.
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
\bibitem{sta06}
P. Stańczyk.
\emph{Algorytmika praktyczna w konkursach Informatycznych},
MSc thesis, University of Warsaw, 2006.
\bibitem{str69}
V. Strassen.
Gaussian elimination is not optimal.
\emph{Numerische Mathematik}, 13(4):354--356, 1969.
\bibitem{tar75}
R. E. Tarjan.
Efficiency of a good but not linear set union algorithm.
\emph{Journal of the ACM}, 22(2):215--225, 1975.
\bibitem{tar84}
R. E. Tarjan and U. Vishkin.
Finding biconnected componemts and computing tree functions in logarithmic parallel time.
\emph{25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984.
\bibitem{tem61}
H. N. V. Temperley and M. E. Fisher.
Dimer problem in statistical mechanics -- an exact result.
\emph{Philosophical Magazine}, 6(68):1061--1063, 1961.
\bibitem{war23}
H. C. von Warnsdorf.
\emph{Des Rösselsprunges einfachste und allgemeinste Lösung}.
Schmalkalden, 1823.
\end{thebibliography}