cphb/luku13.tex

823 lines
27 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\chapter{Shortest paths}
\index{shortest path}
Finding the shortest path between two nodes
is an important graph problem that has many
applications in practice.
For example, a natural problem in a road network
is to calculate the length of the shorthest route
between two cities, given the lengths of the roads.
In an unweighted graph, the length of a path equals
the number of edges in the path and we can
simply use breadth-first search for finding
the shortest path.
However, in this chapter we concentrate on
weighted graphs.
In this case we need more sophisticated algorithms
for finding shortest paths.
\section{BellmanFord algorithm}
\index{BellmanFord algorithm}
The \key{BellmanFordin algoritmi} finds the
shortest path from a starting node to all
other nodes in the graph.
The algorithm works in all kinds of graphs,
provided that the graph doesn't contain a
cycle with negative length.
If the graph contains a negative cycle,
the algorithm can detect this.
The algorithm keeps track of estimated distances
from the starting node to other nodes.
Initially, the estimated distance is 0
to the starting node and infinite to all other nodes.
The algorithm improves the estimates by finding
edges that shorten the paths until it is not
possible to improve any estimate.
\subsubsection{Example}
Let's consider how the BellmanFord algorithm
works in the following graph:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {1};
\node[draw, circle] (2) at (4,3) {2};
\node[draw, circle] (3) at (1,1) {3};
\node[draw, circle] (4) at (4,1) {4};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.55) {$0$};
\node[color=red] at (4,3+0.55) {$\infty$};
\node[color=red] at (1,1-0.55) {$\infty$};
\node[color=red] at (4,1-0.55) {$\infty$};
\node[color=red] at (6,2-0.55) {$\infty$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:3] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-2$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:3] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:2] {} (5);
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (4);
\end{tikzpicture}
\end{center}
Each node in the graph is assigned an estimated distance.
Initially, the distance is 0 to the starting node
and infinite to all other nodes.
The algorithm searches for edges that improve the
estimated distances.
First, all edges from node 1 improve the estimates:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {1};
\node[draw, circle] (2) at (4,3) {2};
\node[draw, circle] (3) at (1,1) {3};
\node[draw, circle] (4) at (4,1) {4};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.55) {$0$};
\node[color=red] at (4,3+0.55) {$2$};
\node[color=red] at (1,1-0.55) {$3$};
\node[color=red] at (4,1-0.55) {$7$};
\node[color=red] at (6,2-0.55) {$\infty$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:3] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-2$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:3] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:2] {} (5);
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (4);
\path[draw=red,thick,->,line width=2pt] (1) -- (2);
\path[draw=red,thick,->,line width=2pt] (1) -- (3);
\path[draw=red,thick,->,line width=2pt] (1) -- (4);
\end{tikzpicture}
\end{center}
After this, edges
$2 \rightarrow 5$ and $3 \rightarrow 4$
improve the estimates:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {1};
\node[draw, circle] (2) at (4,3) {2};
\node[draw, circle] (3) at (1,1) {3};
\node[draw, circle] (4) at (4,1) {4};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.55) {$0$};
\node[color=red] at (4,3+0.55) {$2$};
\node[color=red] at (1,1-0.55) {$3$};
\node[color=red] at (4,1-0.55) {$1$};
\node[color=red] at (6,2-0.55) {$7$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:3] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-2$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:3] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:2] {} (5);
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (4);
\path[draw=red,thick,->,line width=2pt] (2) -- (5);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\end{tikzpicture}
\end{center}
Finally, there is one more improvment:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {1};
\node[draw, circle] (2) at (4,3) {2};
\node[draw, circle] (3) at (1,1) {3};
\node[draw, circle] (4) at (4,1) {4};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.55) {$0$};
\node[color=red] at (4,3+0.55) {$2$};
\node[color=red] at (1,1-0.55) {$3$};
\node[color=red] at (4,1-0.55) {$1$};
\node[color=red] at (6,2-0.55) {$3$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:3] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-2$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:3] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:2] {} (5);
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (4);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
After this, no edge improves the estimates.
This means that the distances are final
and we have successfully
calculated the shortest distance
from the starting node to all other nodes.
For example, the smallest distance 3
from node 1 to node 5 corresponds to
the following path:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {1};
\node[draw, circle] (2) at (4,3) {2};
\node[draw, circle] (3) at (1,1) {3};
\node[draw, circle] (4) at (4,1) {4};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.55) {$0$};
\node[color=red] at (4,3+0.55) {$2$};
\node[color=red] at (1,1-0.55) {$3$};
\node[color=red] at (4,1-0.55) {$1$};
\node[color=red] at (6,2-0.55) {$3$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:3] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-2$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:3] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:2] {} (5);
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (4);
\path[draw=red,thick,->,line width=2pt] (1) -- (3);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
\subsubsection{Implementation}
The following implementation of the
BellmanFord algorithm finds the shortest paths
from a node $x$ to all other nodes in the graph.
The code assumes that the graph is stored
as adjacency lists in array
\begin{lstlisting}
vector<pair<int,int>> v[N];
\end{lstlisting}
so that each pair contains the target node
and the edge weight.
The algorithm consists of $n-1$ rounds,
and on each round the algorithm goes through
all nodes in the graph and tries to improve
the estimated distances.
The algorithm builds an array \texttt{e}
that will contain the distance from $x$
to all nodes in the graph.
The initial value $10^9$ means infinity.
\begin{lstlisting}
for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
for (int i = 1; i <= n-1; i++) {
for (int a = 1; a <= n; a++) {
for (auto b : v[a]) {
e[b.first] = min(e[b.first],e[a]+b.second);
}
}
}
\end{lstlisting}
The time complexity of the algorithm is $O(nm)$
because it consists of $n-1$ rounds and
iterates through all $m$ nodes during a round.
If there are no negative cycles in the graph,
all distances are final after $n-1$ rounds
because each shortest path can contain at most $n-1$ edges.
In practice, the final distances can usually
be found much faster than in $n-1$ rounds.
Thus, a possible way to make the algorithm more efficient
is to stop the algorithm if we can't
improve any distance during a round.
\subsubsection{Negative cycle}
\index{negative cycle}
Using the BellmanFord algorithm we can also
check if the graph contains a cycle with negative length.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,1) {$2$};
\node[draw, circle] (3) at (2,-1) {$3$};
\node[draw, circle] (4) at (4,0) {$4$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:$3$] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:$1$] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:$5$] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-7$] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=right:$2$] {} (3);
\end{tikzpicture}
\end{center}
\noindent
contains a negative cycle
$2 \rightarrow 3 \rightarrow 4 \rightarrow 2$
with length $-4$.
If the graph contains a negative cycle,
we can shorten a path that contains the cycle
infinitely many times by repeating the cycle
again and again.
Thus, the concept of a shortest path
is not meaningful here.
A negative cycle can be detected
using the BellmanFord algorithm by
running the algorithm for $n$ rounds.
If the last round improves any distance,
the graph contains a negative cycle.
Note that this algorithm searches for
a negative cycle in the whole graph
regardless of the starting node.
\subsubsection{SPFA algorithm}
\index{SPFA algorithm}
The \key{SPFA algoritmi} (''Shortest Path Faster Algorithm'')
is a variation for the BellmanFord algorithm,
that is often more efficient than the original algorithm.
It doesn't go through all the edges on each round,
but instead, it chooses the edges to be examined
in a more intelligent way.
The algorithm maintains a queue of nodes that might
be used for improving the distances.
First, the algorithm adds the starting node $x$
to the queue.
Then, the algorithm always processes the
first node in the queue, and when an edge
$a \rightarrow b$ improves a distance,
node $b$ is added to the end of the queue.
The following implementation uses a
\texttt{queue} structure \texttt{q}.
In addition, array \texttt{z} indicates
if a node is already in the queue,
in which case the algorithm doesn't add
the node to the queue again.
\begin{lstlisting}
for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
q.push(x);
while (!q.empty()) {
int a = q.front(); q.pop();
z[a] = 0;
for (auto b : v[a]) {
if (e[a]+b.second < e[b.first]) {
e[b.first] = e[a]+b.second;
if (!z[b]) {q.push(b); z[b] = 1;}
}
}
}
\end{lstlisting}
The efficiency of the SPFA algorithm depends
on the structure of the graph:
the algorithm is usually very efficient,
but its worst case time complexity is still
$O(nm)$ and it is possible to create inputs
that make the algorithm as slow as the
standard BellmanFord algorithm.
\section{Dijkstran algoritmi}
\index{Dijkstran algoritmi@Dijkstran algoritmi}
\key{Dijkstran algoritmi} etsii BellmanFordin
algoritmin tavoin lyhimmät polut
alkusolmusta kaikkiin muihin solmuihin.
Dijkstran algoritmi on tehokkaampi kuin
BellmanFordin algoritmi,
minkä ansiosta se soveltuu suurten
verkkojen käsittelyyn.
Algoritmi vaatii kuitenkin,
ettei verkossa ole negatiivisia kaaria.
Dijkstran algoritmi vastaa
BellmanFordin algoritmia siinä,
että se pitää
yllä etäisyysarvioita solmuihin
ja parantaa niitä algoritmin aikana.
Algoritmin tehokkuus perustuu
siihen, että sen riittää käydä läpi
verkon kaaret vain kerran
hyödyntäen tietoa,
ettei verkossa ole negatiivisia kaaria.
\subsubsection{Esimerkki}
Tarkastellaan Dijkstran algoritmin toimintaa
seuraavassa verkossa, kun alkusolmuna
on solmu 1:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {3};
\node[draw, circle] (2) at (4,3) {4};
\node[draw, circle] (3) at (1,1) {2};
\node[draw, circle] (4) at (4,1) {1};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.6) {$\infty$};
\node[color=red] at (4,3+0.6) {$\infty$};
\node[color=red] at (1,1-0.6) {$\infty$};
\node[color=red] at (4,1-0.6) {$0$};
\node[color=red] at (6,2-0.6) {$\infty$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:6] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\end{tikzpicture}
\end{center}
BellmanFordin algoritmin tavoin
alkusolmun etäisyysarvio on 0
ja kaikissa muissa solmuissa etäisyysarvio
on aluksi ääretön.
Dijkstran algoritmi
ottaa joka askeleella käsittelyyn
sellaisen solmun,
jota ei ole vielä käsitelty
ja jonka etäisyysarvio on
mahdollisimman pieni.
Alussa tällainen solmu on solmu 1,
jonka etäisyysarvio on 0.
Kun solmu tulee käsittelyyn,
algoritmi käy läpi kaikki
siitä lähtevät kaaret ja
parantaa etäisyysarvioita
niiden avulla:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {3};
\node[draw, circle] (2) at (4,3) {4};
\node[draw, circle] (3) at (1,1) {2};
\node[draw, circle, fill=lightgray] (4) at (4,1) {1};
\node[draw, circle] (5) at (6,2) {5};
\node[color=red] at (1,3+0.6) {$\infty$};
\node[color=red] at (4,3+0.6) {$9$};
\node[color=red] at (1,1-0.6) {$5$};
\node[color=red] at (4,1-0.6) {$0$};
\node[color=red] at (6,2-0.6) {$1$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:6] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw=red,thick,->,line width=2pt] (4) -- (2);
\path[draw=red,thick,->,line width=2pt] (4) -- (3);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
Solmun 1 käsittely paransi etäisyysarvioita
solmuihin 2, 4 ja 5,
joiden uudet etäisyydet ovat nyt 5, 9 ja 1.
Seuraavaksi käsittelyyn tulee solmu 5,
jonka etäisyys on 1:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (1,3) {3};
\node[draw, circle] (2) at (4,3) {4};
\node[draw, circle] (3) at (1,1) {2};
\node[draw, circle, fill=lightgray] (4) at (4,1) {1};
\node[draw, circle, fill=lightgray] (5) at (6,2) {5};
\node[color=red] at (1,3+0.6) {$\infty$};
\node[color=red] at (4,3+0.6) {$3$};
\node[color=red] at (1,1-0.6) {$5$};
\node[color=red] at (4,1-0.6) {$0$};
\node[color=red] at (6,2-0.6) {$1$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:6] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw=red,thick,->,line width=2pt] (5) -- (2);
\end{tikzpicture}
\end{center}
Tämän jälkeen vuorossa on solmu 4:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {3};
\node[draw, circle, fill=lightgray] (2) at (4,3) {4};
\node[draw, circle] (3) at (1,1) {2};
\node[draw, circle, fill=lightgray] (4) at (4,1) {1};
\node[draw, circle, fill=lightgray] (5) at (6,2) {5};
\node[color=red] at (1,3+0.6) {$9$};
\node[color=red] at (4,3+0.6) {$3$};
\node[color=red] at (1,1-0.6) {$5$};
\node[color=red] at (4,1-0.6) {$0$};
\node[color=red] at (6,2-0.6) {$1$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:6] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw=red,thick,->,line width=2pt] (2) -- (1);
\end{tikzpicture}
\end{center}
Dijkstran algoritmissa on hienoutena,
että aina kun solmu tulee käsittelyyn,
sen etäisyysarvio on siitä lähtien lopullinen.
Esimerkiksi tässä vaiheessa
etäisyydet 0, 1 ja 3 ovat lopulliset
etäisyydet solmuihin 1, 5 ja 4.
Algoritmi käsittelee vastaavasti
vielä kaksi viimeistä solmua,
minkä jälkeen algoritmin päätteeksi
etäisyydet ovat:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle, fill=lightgray] (1) at (1,3) {3};
\node[draw, circle, fill=lightgray] (2) at (4,3) {4};
\node[draw, circle, fill=lightgray] (3) at (1,1) {2};
\node[draw, circle, fill=lightgray] (4) at (4,1) {1};
\node[draw, circle, fill=lightgray] (5) at (6,2) {5};
\node[color=red] at (1,3+0.6) {$7$};
\node[color=red] at (4,3+0.6) {$3$};
\node[color=red] at (1,1-0.6) {$5$};
\node[color=red] at (4,1-0.6) {$0$};
\node[color=red] at (6,2-0.6) {$1$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:6] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\end{tikzpicture}
\end{center}
\subsubsection{Negatiiviset kaaret}
Dijkstran algoritmin tehokkuus perustuu siihen,
että verkossa ei ole negatiivisia kaaria.
Jos verkossa on negatiivinen kaari,
algoritmi ei välttämättä toimi oikein.
Tarkastellaan esimerkkinä seuraavaa verkkoa:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,1) {$2$};
\node[draw, circle] (3) at (2,-1) {$3$};
\node[draw, circle] (4) at (4,0) {$4$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:2] {} (2);
\path[draw,thick,-] (2) -- node[font=\small,label=above:3] {} (4);
\path[draw,thick,-] (1) -- node[font=\small,label=below:6] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:$-5$] {} (4);
\end{tikzpicture}
\end{center}
\noindent
Lyhin polku solmusta 1 solmuun 4 on
$1 \rightarrow 3 \rightarrow 4$,
ja sen pituus on 1.
Dijkstran algoritmi löytää
kuitenkin keveimpiä kaaria seuraten
polun $1 \rightarrow 2 \rightarrow 4$.
Algoritmi ei pysty ottamaan huomioon,
että alemmalla polulla kaaren paino $-5$
kumoaa aiemman suuren kaaren painon $6$.
\subsubsection{Toteutus}
Seuraava Dijkstran algoritmin toteutus laskee
pienimmän etäisyyden solmusta $x$ kaikkiin muihin solmuihin.
Verkko on tallennettu taulukkoon \texttt{v}
vieruslistoina, joissa on pareina kohdesolmu
ja kaaren pituus.
Dijkstran algoritmin tehokas toteutus vaatii,
että verkosta pystyy löytämään
nopeasti vielä käsittelemättömän solmun,
jonka etäisyysarvio on pienin.
Sopiva tietorakenne tähän on prioriteettijono,
jossa solmut ovat järjestyksessä etäisyys\-arvioiden mukaan.
Prioriteettijonon avulla
seuraavaksi käsiteltävän solmun saa selville logaritmisessa ajassa.
Seuraavassa toteutuksessa prioriteettijono sisältää
pareja, joiden ensimmäinen kenttä on etäisyysarvio
ja toinen kenttä on solmun tunniste:
\begin{lstlisting}
priority_queue<pair<int,int>> q;
\end{lstlisting}
Pieni hankaluus on,
että Dijkstran algoritmissa täytyy saada selville
\emph{pienimmän} etäisyysarvion solmu,
kun taas C++:n prioriteettijono antaa oletuksena
\emph{suurimman} alkion.
Helppo ratkaisu on tallentaa etäisyysarviot
\emph{negatiivisina}, jolloin C++:n prioriteettijonoa
voi käyttää suoraan.
Koodi merkitsee taulukkoon \texttt{z},
onko solmu käsitelty,
ja pitää yllä etäisyysarvioita taulukossa \texttt{e}.
Alussa alkusolmun etäisyysarvio on 0
ja jokaisen muun solmun etäisyysarviona
on ääretöntä vastaava $10^9$.
\begin{lstlisting}
for (int i = 1; i <= n; i++) e[i] = 1e9;
e[x] = 0;
q.push({0,x});
while (!q.empty()) {
int a = q.top().second; q.pop();
if (z[a]) continue;
z[a] = 1;
for (auto b : v[a]) {
if (e[a]+b.second < e[b]) {
e[b] = e[a]+b.second;
q.push({-e[b],b});
}
}
}
\end{lstlisting}
Yllä olevan toteutuksen aikavaativuus on $O(n+m \log m)$,
koska algoritmi käy läpi kaikki verkon solmut
ja lisää jokaista kaarta kohden korkeintaan
yhden etäisyysarvion prioriteettijonoon.
\section{FloydWarshallin algoritmi}
\index{FloydWarshallin algoritmi}
\key{FloydWarshallin algoritmi}
on toisenlainen lähestymistapa
lyhimpien polkujen etsintään.
Toisin kuin muut tämän luvun algoritmit,
se etsii yhdellä kertaa lyhimmät polut kaikkien
verkon solmujen välillä.
Algoritmi ylläpitää kaksiulotteista
taulukkoa etäisyyksistä solmujen
välillä.
Ensin taulukkoon on merkitty
etäisyydet käyttäen vain solmujen
välisiä kaaria.
Tämän jälkeen algoritmi
päivittää etäisyyksiä,
kun verkon solmut saavat yksi kerrallaan
toimia välisolmuina poluilla.
\subsubsection{Esimerkki}
Tarkastellaan FloydWarshallin
algoritmin toimintaa seuraavassa verkossa:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$3$};
\node[draw, circle] (2) at (4,3) {$4$};
\node[draw, circle] (3) at (1,1) {$2$};
\node[draw, circle] (4) at (4,1) {$1$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\end{tikzpicture}
\end{center}
Algoritmi merkitsee aluksi taulukkoon
etäisyyden 0 jokaisesta solmusta itseensä
sekä etäisyyden $x$, jos solmuparin välillä
on kaari, jonka pituus on $x$.
Muiden solmuparien etäisyys on aluksi ääretön.
Tässä verkossa taulukosta tulee:
\begin{center}
\begin{tabular}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 5 & $\infty$ & 9 & 1 \\
2 & 5 & 0 & 2 & $\infty$ & $\infty$ \\
3 & $\infty$ & 2 & 0 & 7 & $\infty$ \\
4 & 9 & $\infty$ & 7 & 0 & 2 \\
5 & 1 & $\infty$ & $\infty$ & 2 & 0 \\
\end{tabular}
\end{center}
\vspace{10pt}
Algoritmin toiminta muodostuu peräkkäisistä kierroksista.
Jokaisella kierroksella valitaan yksi uusi solmu,
joka saa toimia välisolmuna poluilla,
ja algoritmi parantaa taulukon
etäisyyksiä muodostaen polkuja tämän solmun avulla.
Ensimmäisellä kierroksella solmu 1 on välisolmu.
Tämän ansiosta solmujen 2 ja 4 välille muodostuu
polku, jonka pituus on 14,
koska solmu 1 yhdistää ne toisiinsa.
Vastaavasti solmut 2 ja 5 yhdistyvät polulla,
jonka pituus on 6.
\begin{center}
\begin{tabular}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 5 & $\infty$ & 9 & 1 \\
2 & 5 & 0 & 2 & \textbf{14} & \textbf{6} \\
3 & $\infty$ & 2 & 0 & 7 & $\infty$ \\
4 & 9 & \textbf{14} & 7 & 0 & 2 \\
5 & 1 & \textbf{6} & $\infty$ & 2 & 0 \\
\end{tabular}
\end{center}
\vspace{10pt}
Toisella kierroksella solmu 2 saa toimia välisolmuna.
Tämä mahdollistaa uudet polut solmuparien 1 ja 3
sekä 3 ja 5 välille:
\begin{center}
\begin{tabular}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 5 & \textbf{7} & 9 & 1 \\
2 & 5 & 0 & 2 & 14 & 6 \\
3 & \textbf{7} & 2 & 0 & 7 & \textbf{8} \\
4 & 9 & 14 & 7 & 0 & 2 \\
5 & 1 & 6 & \textbf{8} & 2 & 0 \\
\end{tabular}
\end{center}
\vspace{10pt}
Kolmannella kierroksella solmu 3 saa toimia välisolmuna,
jolloin syntyy uusi polku solmuparin 2 ja 4 välille:
\begin{center}
\begin{tabular}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 5 & 7 & 9 & 1 \\
2 & 5 & 0 & 2 & \textbf{9} & 6 \\
3 & 7 & 2 & 0 & 7 & 8 \\
4 & 9 & \textbf{9} & 7 & 0 & 2 \\
5 & 1 & 6 & 8 & 2 & 0 \\
\end{tabular}
\end{center}
\vspace{10pt}
Algoritmin toiminta jatkuu samalla tavalla
niin, että kukin solmu tulee vuorollaan
välisolmuksi.
Algoritmin päätteeksi taulukko sisältää
lyhimmän etäisyyden minkä tahansa
solmuparin välillä:
\begin{center}
\begin{tabular}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 5 & 7 & 3 & 1 \\
2 & 5 & 0 & 2 & 9 & 6 \\
3 & 7 & 2 & 0 & 7 & 8 \\
4 & 3 & 9 & 7 & 0 & 2 \\
5 & 1 & 6 & 8 & 2 & 0 \\
\end{tabular}
\end{center}
Esimerkiksi taulukosta selviää, että lyhin polku
solmusta 2 solmuun 4 on pituudeltaan 8.
Tämä vastaa seuraavaa polkua:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$3$};
\node[draw, circle] (2) at (4,3) {$4$};
\node[draw, circle] (3) at (1,1) {$2$};
\node[draw, circle] (4) at (4,1) {$1$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:7] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:2] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:5] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:9] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\path[draw=red,thick,->,line width=2pt] (5) -- (2);
\end{tikzpicture}
\end{center}
\subsubsection{Toteutus}
FloydWarshallin algoritmin etuna on,
että se on helppoa toteuttaa.
Seuraava toteutus muodostaa etäisyysmatriisin
\texttt{d}, jossa $\texttt{d}[a][b]$
on pienin etäisyys polulla solmusta $a$ solmuun $b$.
Aluksi algoritmi alustaa matriisin \texttt{d}
verkon vierusmatriisin \texttt{v} perusteella
(arvo $10^9$ kuvastaa ääretöntä):
\begin{lstlisting}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) d[i][j] = 0;
else if (v[i][j]) d[i][j] = v[i][j];
else d[i][j] = 1e9;
}
}
\end{lstlisting}
Tämän jälkeen lyhimmät polut löytyvät seuraavasti:
\begin{lstlisting}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
}
}
}
\end{lstlisting}
Algoritmin aikavaativuus on
$O(n^3)$, koska siinä on kolme sisäkkäistä
silmukkaa,
jotka käyvät läpi verkon solmut.
Koska FloydWarshallin
algoritmin toteutus on yksinkertainen,
algoritmi voi olla hyvä valinta jopa silloin,
kun haettavana on yksittäinen
lyhin polku verkossa.
Tämä on kuitenkin mahdollista vain silloin,
kun verkko on niin pieni,
että kuutiollinen aikavaativuus on riittävä.