2017-01-10 21:33:14 +01:00
|
|
|
|
\chapter{Flows and cuts}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
In this chapter, we will focus on the following
|
2017-02-07 23:36:49 +01:00
|
|
|
|
two problems:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
2017-01-10 21:33:14 +01:00
|
|
|
|
\item \key{Finding a maximum flow}:
|
|
|
|
|
What is the maximum amount of flow we can
|
2017-02-07 23:36:49 +01:00
|
|
|
|
send from a node to another node?
|
2017-01-10 21:33:14 +01:00
|
|
|
|
\item \key{Finding a minimum cut}:
|
|
|
|
|
What is a minimum-weight set of edges
|
2017-02-07 23:36:49 +01:00
|
|
|
|
that separates two nodes of the graph?
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\end{itemize}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The input for both these problems is a directed,
|
|
|
|
|
weighted graph that contains two special nodes:
|
|
|
|
|
the \key{source} is a node with no incoming edges,
|
|
|
|
|
and the \key{sink} is a node with no outgoing edges.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
As an example, we will use the following graph
|
2017-02-07 23:36:49 +01:00
|
|
|
|
where node 1 is the source and node 6
|
|
|
|
|
is the sink:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,2) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,1) {$5$};
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) -- node[font=\small,label=6] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=below:4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- node[font=\small,label=below:1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) -- node[font=\small,label=below:2] {} (4);
|
|
|
|
|
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=left:8] {} (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
\subsubsection{Maximum flow}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
\index{flow}
|
|
|
|
|
\index{maximum flow}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
In the \key{maximum flow} problem,
|
|
|
|
|
our task is to send as much flow as possible
|
|
|
|
|
from the source to the sink.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The weight of each edge is a capacity that
|
2017-02-07 23:36:49 +01:00
|
|
|
|
restricts the flow
|
|
|
|
|
that can go through the edge.
|
|
|
|
|
In each intermediate node,
|
|
|
|
|
the incoming and outgoing
|
|
|
|
|
flow has to be equal.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
For example, the size of the maximum flow
|
|
|
|
|
in the example graph is 7.
|
|
|
|
|
The following picture shows how we can
|
|
|
|
|
route the flow:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,2) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,1) {$5$};
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=3/5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) -- node[font=\small,label=6/6] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=5/5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=below:4/4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- node[font=\small,label=below:1/1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) -- node[font=\small,label=below:2/2] {} (4);
|
|
|
|
|
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3/3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=left:1/8] {} (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The notation $v/k$ means
|
2017-02-18 14:43:05 +01:00
|
|
|
|
that a flow of $v$ units is routed through
|
2017-02-07 23:36:49 +01:00
|
|
|
|
an edge whose capacity is $k$ units.
|
|
|
|
|
The size of the flow is $7$,
|
|
|
|
|
because the source sends $3+4$ units of flow
|
|
|
|
|
and the sink receives $5+2$ units of flow.
|
|
|
|
|
It is easy see that this flow is maximum,
|
|
|
|
|
because the total capacity of the edges
|
|
|
|
|
leading to the sink is $7$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-21 00:17:36 +01:00
|
|
|
|
\subsubsection{Minimum cut}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
\index{cut}
|
|
|
|
|
\index{minimum cut}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
In the \key{minimum cut} problem,
|
|
|
|
|
our task is to remove a set
|
|
|
|
|
of edges from the graph
|
|
|
|
|
such that there will be no path from the source
|
|
|
|
|
to the sink after the removal
|
|
|
|
|
and the total weight of the removed edges
|
|
|
|
|
is minimum.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The size of the minimum cut in the example graph is 7.
|
|
|
|
|
It suffices to remove the edges $2 \rightarrow 3$
|
|
|
|
|
and $4 \rightarrow 5$:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,2) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,1) {$5$};
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) -- node[font=\small,label=6] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (1) -- node[font=\small,label=below:4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- node[font=\small,label=below:1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) -- node[font=\small,label=below:2] {} (4);
|
|
|
|
|
\path[draw,thick,<-] (2) -- node[font=\small,label=left:3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- node[font=\small,label=left:8] {} (6);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (4-.3,3-.3) -- (4+.3,3+.3);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (4-.3,3+.3) -- (4+.3,3-.3);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (4-.3,1-.3) -- (4+.3,1+.3);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (4-.3,1+.3) -- (4+.3,1-.3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
After removing the edges,
|
|
|
|
|
there will be no path from the source to the sink.
|
|
|
|
|
The size of the cut is $7$,
|
|
|
|
|
because the weights of the removed edges
|
|
|
|
|
are $6$ and $1$.
|
|
|
|
|
The cut is minimum, because there is no valid
|
|
|
|
|
way to remove edges from the graph such that
|
|
|
|
|
their total weight would be less than $7$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\\\\
|
2017-01-10 21:33:14 +01:00
|
|
|
|
It is not a coincidence that
|
|
|
|
|
both the size of the maximum flow and
|
2017-02-18 14:43:05 +01:00
|
|
|
|
the size of the minimum cut is 7 in the above example.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
It turns out that the size of the maximum flow
|
|
|
|
|
and the minimum cut is
|
|
|
|
|
\emph{always} the same,
|
2017-01-10 21:33:14 +01:00
|
|
|
|
so the concepts are two sides of the same coin.
|
|
|
|
|
|
|
|
|
|
Next we will discuss the Ford–Fulkerson
|
2017-02-18 14:43:05 +01:00
|
|
|
|
algorithm that can be used to find
|
2017-02-07 23:36:49 +01:00
|
|
|
|
the maximum flow and minimum cut of a graph.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The algorithm also helps us to understand
|
|
|
|
|
\emph{why} they are equally large.
|
|
|
|
|
|
|
|
|
|
\section{Ford–Fulkerson algorithm}
|
|
|
|
|
|
|
|
|
|
\index{Ford–Fulkerson algorithm}
|
|
|
|
|
|
2017-02-21 00:17:36 +01:00
|
|
|
|
The \key{Ford–Fulkerson algorithm} \cite{for56} finds
|
2017-02-07 23:36:49 +01:00
|
|
|
|
the maximum flow in a graph.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The algorithm begins with an empty flow,
|
|
|
|
|
and at each step finds a path in the graph
|
|
|
|
|
that generates more flow.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
Finally, when the algorithm cannot increase the flow
|
|
|
|
|
anymore, it terminates and the maximum flow has been found.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
|
|
|
|
|
The algorithm uses a special representation
|
2017-02-07 23:36:49 +01:00
|
|
|
|
of the graph where each original edge has a reverse
|
2017-01-10 21:33:14 +01:00
|
|
|
|
edge in another direction.
|
|
|
|
|
The weight of each edge indicates how much more flow
|
2017-02-18 14:43:05 +01:00
|
|
|
|
we could route through it.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
At the beginning of the algorithm, the weight of each original edge
|
|
|
|
|
equals the capacity of the edge
|
2017-01-10 21:33:14 +01:00
|
|
|
|
and the weight of each reverse edge is zero.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{samepage}
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The new representation for the example graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=6] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:0] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=2] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:8] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:0] {} (3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
\end{samepage}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
\subsubsection{Algorithm description}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The Ford–Fulkerson algorithm consists of several
|
|
|
|
|
rounds.
|
|
|
|
|
On each round, the algorithm finds
|
|
|
|
|
a path from the source to the sink
|
|
|
|
|
such that each edge on the path has a positive weight.
|
|
|
|
|
If there is more than one possible path available,
|
2017-01-10 21:33:14 +01:00
|
|
|
|
we can choose any of them.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
For example, suppose we choose the following path:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=6] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:0] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=2] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:8] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:0] {} (3);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) edge [bend left=10] (2);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2) edge [bend left=10] (3);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) edge [bend left=10] (6);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6) edge [bend left=10] (4);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
After choosing the path, the flow increases by $x$ units,
|
|
|
|
|
where $x$ is the smallest edge weight on the path.
|
|
|
|
|
In addition, the weight of each edge on the path
|
2017-02-18 14:43:05 +01:00
|
|
|
|
decreases by $x$ and the weight of each reverse edge
|
2017-01-10 21:33:14 +01:00
|
|
|
|
increases by $x$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
In the above path, the weights of the
|
|
|
|
|
edges are 5, 6, 8 and 2.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The smallest weight is 2,
|
2017-01-10 21:33:14 +01:00
|
|
|
|
so the flow increases by 2
|
|
|
|
|
and the new graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=4] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:2] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The idea is that increasing the flow decreases the amount of
|
|
|
|
|
flow that can go through the edges in the future.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
On the other hand, it is possible to modify the
|
|
|
|
|
flow later using the reverse edges of the graph
|
|
|
|
|
if it turns out that
|
|
|
|
|
it would be beneficial to route the flow in another way.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The algorithm increases the flow as long as
|
2017-02-07 23:36:49 +01:00
|
|
|
|
there is a path from the source
|
|
|
|
|
to the sink through positive-weight edges.
|
|
|
|
|
In the present example, our next path can be as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=4] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:2] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=5] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=4] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:0] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) edge [bend left=10] (5);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5) edge [bend left=10] (2);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2) edge [bend left=10] (3);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) edge [bend left=10] (4);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The minimum edge weight on this path is 3,
|
2017-01-10 21:33:14 +01:00
|
|
|
|
so the path increases the flow by 3,
|
2017-02-07 23:36:49 +01:00
|
|
|
|
and the total flow after processing the path is 5.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{samepage}
|
2017-01-10 21:33:14 +01:00
|
|
|
|
The new graph will be as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=3] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:2] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=1] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:5] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=2] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:3] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=1] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:3] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=1] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:6] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:2] {} (3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
\end{samepage}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
We still need two more rounds before reaching the maximum flow.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
For example, we can choose the paths
|
|
|
|
|
$1 \rightarrow 2 \rightarrow 3 \rightarrow 6$ and
|
|
|
|
|
$1 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6$.
|
|
|
|
|
Both paths increase the flow by 1,
|
|
|
|
|
and the final graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=2] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:3] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:6] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:5] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:4] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=0] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:1] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:7] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:1] {} (3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
It is not possible to increase the flow anymore,
|
|
|
|
|
because there is no path from the source
|
|
|
|
|
to the sink with positive edge weights.
|
|
|
|
|
Hence, the algorithm terminates and the maximum flow is 7.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
|
|
|
|
|
\subsubsection{Finding paths}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The Ford–Fulkerson algorithm does not specify
|
2017-02-18 14:43:05 +01:00
|
|
|
|
how we should choose the paths that increase the flow.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
In any case, the algorithm will terminate sooner or later
|
|
|
|
|
and correctly find the maximum flow.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
However, the efficiency of the algorithm depends on
|
|
|
|
|
the way the paths are chosen.
|
|
|
|
|
|
|
|
|
|
A simple way to find paths is to use depth-first search.
|
2017-02-07 23:36:49 +01:00
|
|
|
|
Usually, this works well, but in the worst case,
|
|
|
|
|
each path only increases the flow by 1
|
|
|
|
|
and the algorithm is slow.
|
|
|
|
|
Fortunately, we can avoid this situation
|
2017-02-18 14:43:05 +01:00
|
|
|
|
by using one of the following techniques:
|
2017-01-10 21:33:14 +01:00
|
|
|
|
|
|
|
|
|
\index{Edmonds–Karp algorithm}
|
|
|
|
|
|
2017-02-21 00:17:36 +01:00
|
|
|
|
The \key{Edmonds–Karp algorithm} \cite{edm72}
|
2017-02-07 23:36:49 +01:00
|
|
|
|
chooses each path so that the number of edges
|
|
|
|
|
on the path is as small as possible.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
This can be done by using breadth-first search
|
2017-02-07 23:36:49 +01:00
|
|
|
|
instead of depth-first search for finding paths.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
It turns out that this guarantees that
|
2017-02-07 23:36:49 +01:00
|
|
|
|
the flow increases quickly, and the time complexity
|
2017-01-10 21:33:14 +01:00
|
|
|
|
of the algorithm is $O(m^2 n)$.
|
|
|
|
|
|
|
|
|
|
\index{scaling algorithm}
|
|
|
|
|
|
2017-02-21 20:59:03 +01:00
|
|
|
|
The \key{scaling algorithm} \cite{ahu91} uses depth-first
|
2017-02-07 23:36:49 +01:00
|
|
|
|
search to find paths where each edge weight is
|
|
|
|
|
at least a threshold value.
|
|
|
|
|
Initially, the threshold value is
|
2017-01-10 21:33:14 +01:00
|
|
|
|
the sum of capacities of the edges that
|
2017-02-07 23:36:49 +01:00
|
|
|
|
start at the source.
|
|
|
|
|
Always when a path cannot be found,
|
|
|
|
|
the threshold value is divided by 2.
|
|
|
|
|
The time complexity of the algorithm is $O(m^2 \log c)$,
|
|
|
|
|
where $c$ is the initial threshold value.
|
|
|
|
|
|
|
|
|
|
In practice, the scaling algorithm is easier to implement,
|
|
|
|
|
because depth-first search can be used for finding paths.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
Both algorithms are efficient enough for problems
|
|
|
|
|
that typically appear in programming contests.
|
|
|
|
|
|
2017-02-21 00:17:36 +01:00
|
|
|
|
\subsubsection{Minimum cuts}
|
2017-01-10 21:33:14 +01:00
|
|
|
|
|
|
|
|
|
\index{minimum cut}
|
|
|
|
|
|
|
|
|
|
It turns out that once the Ford–Fulkerson algorithm
|
|
|
|
|
has found a maximum flow,
|
2017-02-07 23:36:49 +01:00
|
|
|
|
it has also found a minimum cut.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
Let $A$ be the set of nodes
|
2017-02-07 23:36:49 +01:00
|
|
|
|
that can be reached from the source
|
|
|
|
|
using positive-weight edges.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
In the example graph, $A$ contains nodes 1, 2 and 4:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9,label distance=-2mm]
|
|
|
|
|
\node[draw, circle,fill=lightgray] (1) at (1,1.3) {$1$};
|
|
|
|
|
\node[draw, circle,fill=lightgray] (2) at (3,2.6) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,2.6) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (7,1.3) {$6$};
|
|
|
|
|
\node[draw, circle,fill=lightgray] (5) at (3,0) {$4$};
|
|
|
|
|
\node[draw, circle] (6) at (5,0) {$5$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=2] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=below:3] {} (1);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=0] {} (3);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=below:6] {} (2);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:5] {} (3);
|
|
|
|
|
\path[draw,thick,->] (1) edge [bend left=10] node[font=\small,label=0] {} (5);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=below:4] {} (1);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=0] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=below:1] {} (5);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=0] {} (4);
|
|
|
|
|
\path[draw,thick,->] (4) edge [bend left=10] node[font=\small,label=below:2] {} (6);
|
|
|
|
|
\path[draw,thick,->] (5) edge [bend left=10] node[font=\small,label=left:0] {} (2);
|
|
|
|
|
\path[draw,thick,->] (2) edge [bend left=10] node[font=\small,label=right:3] {} (5);
|
|
|
|
|
\path[draw,thick,->] (3) edge [bend left=10] node[font=\small,label=right:7] {} (6);
|
|
|
|
|
\path[draw,thick,->] (6) edge [bend left=10] node[font=\small,label=left:1] {} (3);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
Now the minimum cut consists of the edges of the original graph
|
|
|
|
|
that start at some node in $A$, end at some node outside $A$,
|
2017-01-10 21:33:14 +01:00
|
|
|
|
and whose capacity is fully
|
|
|
|
|
used in the maximum flow.
|
|
|
|
|
In the above graph, such edges are
|
|
|
|
|
$2 \rightarrow 3$ and $4 \rightarrow 5$,
|
|
|
|
|
that correspond to the minimum cut $6+1=7$.
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
Why is the flow produced by the algorithm maximum
|
2017-01-10 21:33:14 +01:00
|
|
|
|
and why is the cut minimum?
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The reason is that a graph cannot
|
|
|
|
|
contain a flow whose size is larger
|
2017-01-10 21:33:14 +01:00
|
|
|
|
than the weight of any cut in the graph.
|
|
|
|
|
Hence, always when a flow and a cut are equally large,
|
|
|
|
|
they are a maximum flow and a minimum cut.
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
Let us consider any cut in the graph
|
|
|
|
|
such that the source belongs to $A$,
|
|
|
|
|
the sink belongs to $B$
|
2017-01-10 21:33:14 +01:00
|
|
|
|
and there are edges between the sets:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\draw[dashed] (-2,0) circle (1.5);
|
|
|
|
|
\draw[dashed] (2,0) circle (1.5);
|
|
|
|
|
|
|
|
|
|
\node at (-2,-1) {$A$};
|
|
|
|
|
\node at (2,-1) {$B$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (1) at (-1,0.5) {};
|
|
|
|
|
\node[draw, circle] (2) at (-1,0) {};
|
|
|
|
|
\node[draw, circle] (3) at (-1,-0.5) {};
|
|
|
|
|
\node[draw, circle] (4) at (1,0.5) {};
|
|
|
|
|
\node[draw, circle] (5) at (1,0) {};
|
|
|
|
|
\node[draw, circle] (6) at (1,-0.5) {};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
|
\path[draw,thick,->] (5) -- (2);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-07 23:36:49 +01:00
|
|
|
|
The size of the cut is the sum of the edges
|
|
|
|
|
that go from the set $A$ to the set $B$.
|
|
|
|
|
This is an upper bound for the flow
|
2017-01-10 21:33:14 +01:00
|
|
|
|
in the graph, because the flow has to proceed
|
2017-02-07 23:36:49 +01:00
|
|
|
|
from the set $A$ to the set $B$.
|
2017-01-10 21:33:14 +01:00
|
|
|
|
Thus, a maximum flow is smaller than or equal to
|
|
|
|
|
any cut in the graph.
|
|
|
|
|
|
|
|
|
|
On the other hand, the Ford–Fulkerson algorithm
|
|
|
|
|
produces a flow that is \emph{exactly} as large
|
|
|
|
|
as a cut in the graph.
|
2017-02-18 14:43:05 +01:00
|
|
|
|
Thus, the flow has to be a maximum flow
|
2017-01-10 21:33:14 +01:00
|
|
|
|
and the cut has to be a minimum cut.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\section{Disjoint paths}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Many graph problems can be solved by reducing
|
|
|
|
|
them to the maximum flow problem.
|
|
|
|
|
Our first example of such a problem is
|
|
|
|
|
as follows: we are given a directed graph
|
|
|
|
|
with a source and a sink,
|
|
|
|
|
and our task is to find the maximum number
|
|
|
|
|
of disjoint paths from the source to the sink.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\subsubsection{Edge-disjoint paths}
|
|
|
|
|
|
|
|
|
|
We will first focus on the problem of
|
|
|
|
|
finding the maximum number of
|
|
|
|
|
\key{edge-disjoint paths} from the source to the sink.
|
|
|
|
|
This means that we should construct a set of paths
|
|
|
|
|
such that each edge appears in at most one path.
|
|
|
|
|
|
|
|
|
|
For example, consider the following graph:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5) at (5,1) {$5$};
|
|
|
|
|
\node[draw, circle] (6) at (7,2) {$6$};
|
|
|
|
|
\path[draw,thick,->] (1) -- (2);
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
|
\path[draw,thick,->] (2) -- (4);
|
|
|
|
|
\path[draw,thick,->] (3) -- (2);
|
|
|
|
|
\path[draw,thick,->] (3) -- (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
\path[draw,thick,->] (4) -- (3);
|
|
|
|
|
\path[draw,thick,->] (4) -- (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2017-02-08 20:05:51 +01:00
|
|
|
|
|
|
|
|
|
In this graph, the maximum number of edge-disjoint
|
|
|
|
|
paths is 2.
|
|
|
|
|
We can choose the paths
|
2016-12-28 23:54:51 +01:00
|
|
|
|
$1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 6$
|
2017-02-08 20:05:51 +01:00
|
|
|
|
and $1 \rightarrow 4 \rightarrow 5 \rightarrow 6$ as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5) at (5,1) {$5$};
|
|
|
|
|
\node[draw, circle] (6) at (7,2) {$6$};
|
|
|
|
|
\path[draw,thick,->] (1) -- (2);
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
|
\path[draw,thick,->] (2) -- (4);
|
|
|
|
|
\path[draw,thick,->] (3) -- (2);
|
|
|
|
|
\path[draw,thick,->] (3) -- (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
\path[draw,thick,->] (4) -- (3);
|
|
|
|
|
\path[draw,thick,->] (4) -- (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- (6);
|
|
|
|
|
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (1) -- (2);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (2) -- (4);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (4) -- (3);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (3) -- (6);
|
|
|
|
|
|
|
|
|
|
\path[draw=blue,thick,->,line width=2pt] (1) -- (4);
|
|
|
|
|
\path[draw=blue,thick,->,line width=2pt] (4) -- (5);
|
|
|
|
|
\path[draw=blue,thick,->,line width=2pt] (5) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
It turns out that the maximum number of
|
|
|
|
|
edge-disjoint paths
|
|
|
|
|
equals the maximum flow of the graph,
|
|
|
|
|
assuming that the capacity of each edge is one.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
After the maximum flow has been constructed,
|
2017-02-08 20:05:51 +01:00
|
|
|
|
the edge-disjoint paths can be found greedily
|
|
|
|
|
by following paths from the source to the sink.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\subsubsection{Node-disjoint paths}
|
|
|
|
|
|
|
|
|
|
Let us now consider another problem:
|
|
|
|
|
finding the maximum number of
|
|
|
|
|
\key{node-disjoint paths} from the source
|
|
|
|
|
to the sink.
|
|
|
|
|
In this problem, every node,
|
|
|
|
|
except for the source and sink,
|
|
|
|
|
may appear in at most one path.
|
|
|
|
|
The number of node-disjoint paths is
|
|
|
|
|
often smaller than the number of
|
|
|
|
|
edge-disjoint paths.
|
|
|
|
|
|
|
|
|
|
For example, in the previous graph,
|
|
|
|
|
the maximum number of node-disjoint paths is 1:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5) at (5,1) {$5$};
|
|
|
|
|
\node[draw, circle] (6) at (7,2) {$6$};
|
|
|
|
|
\path[draw,thick,->] (1) -- (2);
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
|
\path[draw,thick,->] (2) -- (4);
|
|
|
|
|
\path[draw,thick,->] (3) -- (2);
|
|
|
|
|
\path[draw,thick,->] (3) -- (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
\path[draw,thick,->] (4) -- (3);
|
|
|
|
|
\path[draw,thick,->] (4) -- (5);
|
|
|
|
|
\path[draw,thick,->] (5) -- (6);
|
|
|
|
|
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (1) -- (2);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (2) -- (4);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (4) -- (3);
|
|
|
|
|
\path[draw=green,thick,->,line width=2pt] (3) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
We can reduce also this problem to the maximum flow problem.
|
|
|
|
|
Since each node can appear in at most one path,
|
|
|
|
|
we have to limit the flow that goes through the nodes.
|
|
|
|
|
A standard method for this is to divide each node into
|
|
|
|
|
two nodes such that the first node has the incoming edges
|
|
|
|
|
of the original node and the second node has the outgoing
|
|
|
|
|
edges of the original node.
|
|
|
|
|
In addition, there is a new edge from the first node
|
|
|
|
|
to the second node.
|
|
|
|
|
|
|
|
|
|
In our example, the graph becomes as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (2a) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3a) at (6,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4a) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5a) at (6,1) {$5$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (2b) at (4,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3b) at (7,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4b) at (4,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5b) at (7,1) {$5$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (6) at (9,2) {$6$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (2a) -- (2b);
|
|
|
|
|
\path[draw,thick,->] (3a) -- (3b);
|
|
|
|
|
\path[draw,thick,->] (4a) -- (4b);
|
|
|
|
|
\path[draw,thick,->] (5a) -- (5b);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (2a);
|
|
|
|
|
\path[draw,thick,->] (1) -- (4a);
|
|
|
|
|
\path[draw,thick,->] (2b) -- (4a);
|
|
|
|
|
\path[draw,thick,->] (3b) edge [bend right=30] (2a);
|
|
|
|
|
\path[draw,thick,->] (3b) -- (5a);
|
|
|
|
|
\path[draw,thick,->] (3b) -- (6);
|
|
|
|
|
\path[draw,thick,->] (4b) -- (3a);
|
|
|
|
|
\path[draw,thick,->] (4b) -- (5a);
|
|
|
|
|
\path[draw,thick,->] (5b) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:34:36 +01:00
|
|
|
|
The maximum flow for the graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}
|
|
|
|
|
\node[draw, circle] (1) at (1,2) {$1$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (2a) at (3,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3a) at (6,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4a) at (3,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5a) at (6,1) {$5$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (2b) at (4,3) {$2$};
|
|
|
|
|
\node[draw, circle] (3b) at (7,3) {$3$};
|
|
|
|
|
\node[draw, circle] (4b) at (4,1) {$4$};
|
|
|
|
|
\node[draw, circle] (5b) at (7,1) {$5$};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (6) at (9,2) {$6$};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (2a) -- (2b);
|
|
|
|
|
\path[draw,thick,->] (3a) -- (3b);
|
|
|
|
|
\path[draw,thick,->] (4a) -- (4b);
|
|
|
|
|
\path[draw,thick,->] (5a) -- (5b);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (2a);
|
|
|
|
|
\path[draw,thick,->] (1) -- (4a);
|
|
|
|
|
\path[draw,thick,->] (2b) -- (4a);
|
|
|
|
|
\path[draw,thick,->] (3b) edge [bend right=30] (2a);
|
|
|
|
|
\path[draw,thick,->] (3b) -- (5a);
|
|
|
|
|
\path[draw,thick,->] (3b) -- (6);
|
|
|
|
|
\path[draw,thick,->] (4b) -- (3a);
|
|
|
|
|
\path[draw,thick,->] (4b) -- (5a);
|
|
|
|
|
\path[draw,thick,->] (5b) -- (6);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) -- (2a);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2a) -- (2b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2b) -- (4a);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (4a) -- (4b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (4b) -- (3a);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3a) -- (3b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3b) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Thus, the maximum number of node-disjoint paths
|
|
|
|
|
from the source to the sink is 1.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\section{Maximum matchings}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 22:34:36 +01:00
|
|
|
|
\index{matching}
|
|
|
|
|
\index{maximum matching}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
The \key{maximum matching} problem asks to find
|
|
|
|
|
a maximum-size set of node pairs in a graph
|
|
|
|
|
such that each pair is connected with an edge and
|
|
|
|
|
each node belongs to at most one pair.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
There are polynomial algorithms for finding
|
2017-02-21 00:17:36 +01:00
|
|
|
|
maximum matchings in general graphs \cite{edm65},
|
2017-02-08 20:05:51 +01:00
|
|
|
|
but such algorithms are complex and do
|
|
|
|
|
not appear in programming contests.
|
|
|
|
|
However, in bipartite graphs,
|
|
|
|
|
the maximum matching problem is much easier
|
|
|
|
|
to solve, because we can reduce it to the
|
|
|
|
|
maximum flow problem.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\subsubsection{Finding maximum matchings}
|
|
|
|
|
|
|
|
|
|
The nodes in a bipartite graph can be always
|
|
|
|
|
divided into two groups such that all edges
|
|
|
|
|
of the graph go from the left group to the right group.
|
|
|
|
|
For example, consider the following bipartite graph:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:34:36 +01:00
|
|
|
|
In this graph, the size of a maximum matching is 3:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (1) -- (5);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (2) -- (7);
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (3) -- (8);
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
We can reduce the bipartite maximum matching problem
|
|
|
|
|
to the maximum flow problem by adding two new nodes
|
|
|
|
|
to the graph: a source and a sink.
|
|
|
|
|
In addition, we add edges from the source
|
|
|
|
|
to each left node and from each right node to the sink.
|
|
|
|
|
After this, the maximum flow of the graph
|
|
|
|
|
equals the maximum matching of the original graph.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
For example, the reduction for the above
|
|
|
|
|
graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (a) at (-2,2.25) {\phantom{0}};
|
|
|
|
|
\node[draw, circle] (b) at (12,2.25) {\phantom{0}};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (5);
|
|
|
|
|
\path[draw,thick,->] (2) -- (7);
|
|
|
|
|
\path[draw,thick,->] (3) -- (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
\path[draw,thick,->] (3) -- (8);
|
|
|
|
|
\path[draw,thick,->] (4) -- (7);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (a) -- (1);
|
|
|
|
|
\path[draw,thick,->] (a) -- (2);
|
|
|
|
|
\path[draw,thick,->] (a) -- (3);
|
|
|
|
|
\path[draw,thick,->] (a) -- (4);
|
|
|
|
|
\path[draw,thick,->] (5) -- (b);
|
|
|
|
|
\path[draw,thick,->] (6) -- (b);
|
|
|
|
|
\path[draw,thick,->] (7) -- (b);
|
|
|
|
|
\path[draw,thick,->] (8) -- (b);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
The maximum flow of this graph is as follows:
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (a) at (-2,2.25) {\phantom{0}};
|
|
|
|
|
\node[draw, circle] (b) at (12,2.25) {\phantom{0}};
|
|
|
|
|
|
|
|
|
|
%\path[draw,thick,->] (1) -- (5);
|
|
|
|
|
%\path[draw,thick,->] (2) -- (7);
|
|
|
|
|
\path[draw,thick,->] (3) -- (5);
|
|
|
|
|
\path[draw,thick,->] (3) -- (6);
|
|
|
|
|
%\path[draw,thick,->] (3) -- (8);
|
|
|
|
|
\path[draw,thick,->] (4) -- (7);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->] (a) -- (1);
|
|
|
|
|
\path[draw,thick,->] (a) -- (2);
|
|
|
|
|
\path[draw,thick,->] (a) -- (3);
|
|
|
|
|
\path[draw,thick,->] (a) -- (4);
|
|
|
|
|
\path[draw,thick,->] (5) -- (b);
|
|
|
|
|
\path[draw,thick,->] (6) -- (b);
|
|
|
|
|
\path[draw,thick,->] (7) -- (b);
|
|
|
|
|
\path[draw,thick,->] (8) -- (b);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) -- (5);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2) -- (7);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) -- (8);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (a) -- (1);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (a) -- (2);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (a) -- (3);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5) -- (b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (7) -- (b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (8) -- (b);
|
|
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2017-01-10 22:34:36 +01:00
|
|
|
|
|
|
|
|
|
\subsubsection{Hall's theorem}
|
|
|
|
|
|
|
|
|
|
\index{Hall's theorem}
|
|
|
|
|
\index{perfect matching}
|
|
|
|
|
|
2017-02-25 18:39:04 +01:00
|
|
|
|
\key{Hall's theorem} \cite{hal35} can be used to find out
|
2017-02-08 20:05:51 +01:00
|
|
|
|
whether a bipartite graph has a matching
|
|
|
|
|
that contains all left or right nodes.
|
|
|
|
|
If the number of left and right nodes is the same,
|
|
|
|
|
Hall's theorem tells us if it is possible to
|
|
|
|
|
construct a \key{perfect matching} that
|
|
|
|
|
contains all nodes of the graph.
|
|
|
|
|
|
|
|
|
|
Assume that we want to find a matching
|
|
|
|
|
that contains all left nodes.
|
|
|
|
|
Let $X$ be any set of left nodes
|
2017-01-10 22:34:36 +01:00
|
|
|
|
and let $f(X)$ be the set of their neighbors.
|
2017-02-08 20:05:51 +01:00
|
|
|
|
According to Hall's theorem, a matching
|
|
|
|
|
that contains all left nodes exists
|
2017-01-10 22:34:36 +01:00
|
|
|
|
exactly when for each $X$, the condition $|X| \le |f(X)|$ holds.
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Let us study Hall's theorem in the example graph.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
First, let $X=\{1,3\}$ and $f(X)=\{5,6,8\}$:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle, fill=lightgray] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:34:36 +01:00
|
|
|
|
The condition of Hall's theorem holds, because
|
|
|
|
|
$|X|=2$ and $|f(X)|=3$.
|
|
|
|
|
Next, let $X=\{2,4\}$ and $f(X)=\{7\}$:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:34:36 +01:00
|
|
|
|
In this case, $|X|=2$ and $|f(X)|=1$,
|
2017-02-08 20:05:51 +01:00
|
|
|
|
so the condition of Hall's theorem does not hold.
|
|
|
|
|
This means that it is not possible to form
|
2017-01-10 22:34:36 +01:00
|
|
|
|
a perfect matching in the graph.
|
|
|
|
|
This result is not surprising, because we already
|
2017-02-08 20:05:51 +01:00
|
|
|
|
know that the maximum matching of the graph is 3 and not 4.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
If the condition of Hall's theorem does not hold,
|
|
|
|
|
the set $X$ provides an explanation \emph{why}
|
|
|
|
|
we cannot form such a matching.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
Since $X$ contains more nodes than $f(X)$,
|
2017-02-18 14:43:05 +01:00
|
|
|
|
there are no pairs for all nodes in $X$.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
For example, in the above graph, both nodes 2 and 4
|
2017-02-08 20:05:51 +01:00
|
|
|
|
should be connected with node 7 which is not allowed.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
|
|
|
|
|
\subsubsection{Kőnig's theorem}
|
|
|
|
|
|
|
|
|
|
\index{Kőnig's theorem}
|
|
|
|
|
\index{node cover}
|
|
|
|
|
\index{minimum node cover}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
A \key{minimum node cover} of a graph
|
2017-02-18 14:43:05 +01:00
|
|
|
|
is a minimum set of nodes such that each edge of the graph
|
|
|
|
|
has at least one endpoint in the set.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
In a general graph, finding a minimum node cover
|
|
|
|
|
is a NP-hard problem.
|
2017-02-18 14:43:05 +01:00
|
|
|
|
However, if the graph is bipartite,
|
2017-02-25 18:39:04 +01:00
|
|
|
|
\key{Kőnig's theorem} \cite{kon31} tells us that
|
2017-02-08 20:05:51 +01:00
|
|
|
|
the size of a minimum node cover
|
2017-02-18 14:43:05 +01:00
|
|
|
|
and the size of a maximum matching are always equal.
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Thus, we can calculate the size of a minimum node cover
|
2017-01-10 22:34:36 +01:00
|
|
|
|
using a maximum flow algorithm.
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Let us consider the following graph
|
2017-01-10 22:34:36 +01:00
|
|
|
|
with a maximum matching of size 3:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (1) -- (5);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (2) -- (7);
|
|
|
|
|
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Kőnig's theorem tells us that the size
|
2017-01-10 22:34:36 +01:00
|
|
|
|
of a minimum node cover is also 3.
|
|
|
|
|
It can be constructed as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle, fill=lightgray] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2017-01-10 22:34:36 +01:00
|
|
|
|
|
|
|
|
|
\index{independent set}
|
|
|
|
|
\index{maximum independent set}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
The nodes that do \emph{not}
|
2017-01-10 22:34:36 +01:00
|
|
|
|
belong to a minimum node cover
|
2017-02-08 20:05:51 +01:00
|
|
|
|
form a \key{maximum independent set}.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
This is the largest possible set of nodes
|
2017-02-08 20:05:51 +01:00
|
|
|
|
such that no two nodes in the set
|
|
|
|
|
are connected with an edge.
|
2017-01-10 22:34:36 +01:00
|
|
|
|
Once again, finding a maximum independent
|
|
|
|
|
set in a general graph is a NP-hard problem,
|
|
|
|
|
but in a bipartite graph we can use
|
|
|
|
|
Kőnig's theorem to solve the problem efficiently.
|
|
|
|
|
In the example graph, the maximum independent
|
|
|
|
|
set is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.60]
|
|
|
|
|
\node[draw, circle] (1) at (2,4.5) {1};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (2) at (2,3) {2};
|
|
|
|
|
\node[draw, circle] (3) at (2,1.5) {3};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (4) at (2,0) {4};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (5) at (8,4.5) {5};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (6) at (8,3) {6};
|
|
|
|
|
\node[draw, circle] (7) at (8,1.5) {7};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (8) at (8,0) {8};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- (5);
|
|
|
|
|
\path[draw,thick,-] (2) -- (7);
|
|
|
|
|
\path[draw,thick,-] (3) -- (5);
|
|
|
|
|
\path[draw,thick,-] (3) -- (6);
|
|
|
|
|
\path[draw,thick,-] (3) -- (8);
|
|
|
|
|
\path[draw,thick,-] (4) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
\section{Path covers}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
\index{path cover}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
A \key{path cover} is a set of paths in a graph
|
2017-02-08 20:05:51 +01:00
|
|
|
|
such that each node of the graph belongs to at least one path.
|
2017-02-18 14:43:05 +01:00
|
|
|
|
It turns out that in directed, acyclic graphs,
|
2017-02-08 20:05:51 +01:00
|
|
|
|
we can reduce the problem of finding a minimum
|
|
|
|
|
path cover to the problem of finding a maximum
|
|
|
|
|
flow in another graph.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\subsubsection{Node-disjoint path cover}
|
|
|
|
|
|
|
|
|
|
In a \key{node-disjoint path cover},
|
|
|
|
|
each node belongs to exactly one path.
|
2017-01-10 22:56:44 +01:00
|
|
|
|
As an example, consider the following graph:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle] (7) at (4,-2) {7};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (5);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (3);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
A minimum node-disjoint path cover
|
|
|
|
|
of this graph
|
2017-01-10 22:56:44 +01:00
|
|
|
|
consists of three paths.
|
|
|
|
|
For example, we can choose the following paths:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle] (7) at (4,-2) {7};
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) -- (5);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5) -- (6);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6) -- (7);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
Note that one of the paths only contains node 2,
|
2017-02-08 20:05:51 +01:00
|
|
|
|
so it is possible that a path does not contain any edges.
|
|
|
|
|
|
|
|
|
|
We can find a minimum node-disjoint path cover
|
2017-02-18 14:43:05 +01:00
|
|
|
|
by constructing a matching graph where each node
|
|
|
|
|
of the original graph is represented by
|
|
|
|
|
two nodes: a left node and a right node.
|
2017-02-08 20:05:51 +01:00
|
|
|
|
There is an edge from a left node to a right node
|
|
|
|
|
if there is a such an edge in the original graph.
|
|
|
|
|
In addition, the matching graph contains a source and a sink
|
|
|
|
|
such that there are edges from the source to all
|
|
|
|
|
left nodes and from all right nodes to the sink.
|
|
|
|
|
|
|
|
|
|
A maximum matching in the resulting graph corresponds
|
|
|
|
|
to a minimum node-disjoint path cover in
|
|
|
|
|
the original graph.
|
|
|
|
|
For example, the following graph contains
|
|
|
|
|
a maximum matching of size 4:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1a) at (0,6) {1};
|
|
|
|
|
\node[draw, circle] (2a) at (0,5) {2};
|
|
|
|
|
\node[draw, circle] (3a) at (0,4) {3};
|
|
|
|
|
\node[draw, circle] (4a) at (0,3) {4};
|
|
|
|
|
\node[draw, circle] (5a) at (0,2) {5};
|
|
|
|
|
\node[draw, circle] (6a) at (0,1) {6};
|
|
|
|
|
\node[draw, circle] (7a) at (0,0) {7};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (1b) at (4,6) {1};
|
|
|
|
|
\node[draw, circle] (2b) at (4,5) {2};
|
|
|
|
|
\node[draw, circle] (3b) at (4,4) {3};
|
|
|
|
|
\node[draw, circle] (4b) at (4,3) {4};
|
|
|
|
|
\node[draw, circle] (5b) at (4,2) {5};
|
|
|
|
|
\node[draw, circle] (6b) at (4,1) {6};
|
|
|
|
|
\node[draw, circle] (7b) at (4,0) {7};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (a) at (-3,3) {\phantom{0}};
|
|
|
|
|
\node[draw, circle] (b) at (7,3) {\phantom{0}};
|
|
|
|
|
|
|
|
|
|
%\path[draw,thick,->,>=latex] (1a) -- (5b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2a) -- (6b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (3a) -- (4b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (5a) -- (6b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6a) -- (3b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (6a) -- (7b);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (1a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (2a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (3a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (4a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (5a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (6a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (7a);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (3b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (4b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (7b) -- (b);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1a) -- (5b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5a) -- (6b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
|
|
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
Each edge in the maximum matching of the matching graph corresponds
|
|
|
|
|
to an edge in the minimum node-disjoint path cover
|
|
|
|
|
of the original graph.
|
|
|
|
|
Thus, the size of the minimum node-disjoint path cover is $n-c$,
|
|
|
|
|
where $n$ is the number of nodes in the original graph
|
|
|
|
|
and $c$ is the size of the maximum matching.
|
|
|
|
|
|
|
|
|
|
\subsubsection{General path cover}
|
|
|
|
|
|
|
|
|
|
A \key{general path cover} is a path cover
|
|
|
|
|
where a node can belong to more than one path.
|
|
|
|
|
A minimum general path cover may be smaller
|
|
|
|
|
than a minimum node-disjoint path cover,
|
|
|
|
|
because a node can used multiple times in paths.
|
|
|
|
|
Consider again the following graph:
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle] (7) at (4,-2) {7};
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (5);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (3);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
The minimum general path cover in this graph
|
|
|
|
|
consists of two paths.
|
|
|
|
|
For example, the first path may be as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle] (7) at (4,-2) {7};
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1) -- (5);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5) -- (6);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6) -- (3);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2017-02-08 20:05:51 +01:00
|
|
|
|
And the second path may be as follows:
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle] (7) at (4,-2) {7};
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2) -- (6);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
A minimum general path cover can be found
|
|
|
|
|
almost like a minimum node-disjoint path cover.
|
2017-02-08 20:05:51 +01:00
|
|
|
|
It suffices to add some new edges to the matching graph
|
2017-01-10 22:56:44 +01:00
|
|
|
|
so that there is an edge $a \rightarrow b$
|
2017-02-08 20:05:51 +01:00
|
|
|
|
always when there is a path from $a$ to $b$
|
2017-01-10 22:56:44 +01:00
|
|
|
|
in the original graph (possibly through several edges).
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
The matching graph for the above graph is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1a) at (0,6) {1};
|
|
|
|
|
\node[draw, circle] (2a) at (0,5) {2};
|
|
|
|
|
\node[draw, circle] (3a) at (0,4) {3};
|
|
|
|
|
\node[draw, circle] (4a) at (0,3) {4};
|
|
|
|
|
\node[draw, circle] (5a) at (0,2) {5};
|
|
|
|
|
\node[draw, circle] (6a) at (0,1) {6};
|
|
|
|
|
\node[draw, circle] (7a) at (0,0) {7};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (1b) at (4,6) {1};
|
|
|
|
|
\node[draw, circle] (2b) at (4,5) {2};
|
|
|
|
|
\node[draw, circle] (3b) at (4,4) {3};
|
|
|
|
|
\node[draw, circle] (4b) at (4,3) {4};
|
|
|
|
|
\node[draw, circle] (5b) at (4,2) {5};
|
|
|
|
|
\node[draw, circle] (6b) at (4,1) {6};
|
|
|
|
|
\node[draw, circle] (7b) at (4,0) {7};
|
|
|
|
|
|
|
|
|
|
\node[draw, circle] (a) at (-3,3) {\phantom{0}};
|
|
|
|
|
\node[draw, circle] (b) at (7,3) {\phantom{0}};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%\path[draw,thick,->,>=latex] (1a) -- (5b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (1a) -- (6b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (1a) -- (7b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (1a) -- (3b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (1a) -- (4b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5a) -- (6b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5a) -- (7b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (5a) -- (3b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5a) -- (4b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6a) -- (7b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (6a) -- (7b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6a) -- (3b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (3a) -- (4b);
|
|
|
|
|
%\path[draw,thick,->,>=latex] (2a) -- (6b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2a) -- (7b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2a) -- (3b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2a) -- (4b);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (1a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (2a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (3a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (4a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (5a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (6a);
|
|
|
|
|
\path[draw,thick,->,>=latex] (a) -- (7a);
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (3b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (4b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6b) -- (b);
|
|
|
|
|
\path[draw,thick,->,>=latex] (7b) -- (b);
|
|
|
|
|
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (1a) -- (5b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (5a) -- (3b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (2a) -- (6b);
|
|
|
|
|
\path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (1a) -- (6b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (1a) -- (7b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (1a) -- (3b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (1a) -- (4b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (5a) -- (6b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (5a) -- (7b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (5a) -- (3b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (5a) -- (4b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (6a) -- (7b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (6a) -- (3b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (3a) -- (4b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (2a) -- (6b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (2a) -- (7b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (2a) -- (3b);
|
|
|
|
|
% \path[draw=red,thick,->,line width=2pt] (2a) -- (4b);
|
|
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
\subsubsection{Dilworth's theorem}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-01-10 22:56:44 +01:00
|
|
|
|
\index{Dilworth's theorem}
|
|
|
|
|
\index{antichain}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
An \key{antichain} is a set of nodes of a graph
|
|
|
|
|
such that there is no path
|
|
|
|
|
from any node to another node
|
|
|
|
|
using the edges of the graph.
|
2017-02-25 18:39:04 +01:00
|
|
|
|
\key{Dilworth's theorem} \cite{dil50} states that
|
2017-02-08 20:05:51 +01:00
|
|
|
|
in a directed acyclic graph, the size of
|
|
|
|
|
a minimum general path cover
|
|
|
|
|
equals the size of a maximum antichain.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
For example, nodes 3 and 7 form an antichain
|
|
|
|
|
in the following graph:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
|
\node[draw, circle] (1) at (0,0) {1};
|
|
|
|
|
\node[draw, circle] (2) at (2,0) {2};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (3) at (4,0) {3};
|
|
|
|
|
\node[draw, circle] (4) at (6,0) {4};
|
|
|
|
|
\node[draw, circle] (5) at (0,-2) {5};
|
|
|
|
|
\node[draw, circle] (6) at (2,-2) {6};
|
|
|
|
|
\node[draw, circle, fill=lightgray] (7) at (4,-2) {7};
|
|
|
|
|
|
|
|
|
|
\path[draw,thick,->,>=latex] (1) -- (5);
|
|
|
|
|
\path[draw,thick,->,>=latex] (2) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (3) -- (4);
|
|
|
|
|
\path[draw,thick,->,>=latex] (5) -- (6);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (3);
|
|
|
|
|
\path[draw,thick,->,>=latex] (6) -- (7);
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2017-02-08 20:05:51 +01:00
|
|
|
|
This is a maximum antichain, because it is not possible
|
|
|
|
|
to construct any antichain that would contain three nodes.
|
|
|
|
|
We have seen before that the size of a minimum
|
|
|
|
|
general path cover of this graph consists of two paths.
|