2016-12-28 23:54:51 +01:00
|
|
|
\chapter{Spanning trees}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
\index{spanning tree}
|
|
|
|
|
|
|
|
A \key{spanning tree} is a set of edges of a graph
|
|
|
|
such that there is a path between any two nodes
|
|
|
|
in the graph using only the edges in the spanning tree.
|
|
|
|
Like trees in general, a spanning tree is
|
|
|
|
connected and acyclic.
|
|
|
|
Usually, there are many ways to construct a spanning tree.
|
|
|
|
|
|
|
|
For example, in the graph
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-08 12:28:52 +01:00
|
|
|
one possible spanning tree is as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
The weight of a spanning tree is the sum of the edge weights.
|
|
|
|
For example, the weight of the above spanning tree is
|
|
|
|
$3+5+9+3+2=22$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
\index{minimum spanning tree}
|
|
|
|
|
|
|
|
A \key{minimum spanning tree}
|
|
|
|
is a spanning tree whose weight is as small as possible.
|
|
|
|
The weight of a minimum spanning tree for the above graph
|
|
|
|
is 20, and a tree can be constructed as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
\index{maximum spanning tree}
|
|
|
|
|
|
|
|
Correspondingly, a \key{maximum spanning tree}
|
|
|
|
is a spanning tree whose weight is as large as possible.
|
|
|
|
The weight of a maximum spanning tree for the
|
|
|
|
above graph is 32:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
Note that there may be several different ways
|
|
|
|
for constructing a minimum or maximum spanning tree,
|
|
|
|
so the trees are not unique.
|
|
|
|
|
|
|
|
This chapter discusses algorithms that construct
|
|
|
|
a minimum or maximum spanning tree for a graph.
|
|
|
|
It turns out that it is easy to find such spanning trees
|
|
|
|
because many greedy methods produce an optimal solution.
|
|
|
|
|
|
|
|
We will learn two algorithms that both construct the
|
|
|
|
tree by choosing edges ordered by weights.
|
|
|
|
We will focus on finding a minimum spanning tree,
|
|
|
|
but the same algorithms can be used for finding a
|
|
|
|
maximum spanning tree by processing the edges in reverse order.
|
|
|
|
|
|
|
|
\section{Kruskal's algorithm}
|
|
|
|
|
|
|
|
\index{Kruskal's algorithm}
|
|
|
|
|
|
|
|
In \key{Kruskal's algorithm}, the initial spanning tree
|
|
|
|
is empty and doesn't contain any edges.
|
|
|
|
Then the algorithm adds edges to the tree
|
|
|
|
one at a time
|
|
|
|
in increasing order of their weights.
|
|
|
|
At each step, the algorithm includes an edge in the tree
|
|
|
|
if it doesn't create a cycle.
|
|
|
|
|
|
|
|
Kruskal's algorithm maintains the components
|
|
|
|
in the tree.
|
|
|
|
Initially, each node of the graph
|
|
|
|
is in its own component,
|
|
|
|
and each edge added to the tree joins two components.
|
|
|
|
Finally, all nodes will be in the same component,
|
|
|
|
and a minimum spanning tree has been found.
|
|
|
|
|
|
|
|
\subsubsection{Example}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{samepage}
|
2017-01-08 12:28:52 +01:00
|
|
|
Let's consider how Kruskal's algorithm processes the
|
|
|
|
following graph:
|
2016-12-28 23:54:51 +01:00
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{samepage}
|
|
|
|
|
|
|
|
\begin{samepage}
|
2017-01-08 12:28:52 +01:00
|
|
|
The first step in the algorithm is to sort the
|
|
|
|
edges in increasing order of their weights.
|
|
|
|
The result is the following list:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{tabular}{ll}
|
|
|
|
\\
|
2017-01-08 12:28:52 +01:00
|
|
|
edge & weight \\
|
2016-12-28 23:54:51 +01:00
|
|
|
\hline
|
|
|
|
5--6 & 2 \\
|
|
|
|
1--2 & 3 \\
|
|
|
|
3--6 & 3 \\
|
|
|
|
1--5 & 5 \\
|
|
|
|
2--3 & 5 \\
|
|
|
|
2--5 & 6 \\
|
|
|
|
4--6 & 7 \\
|
|
|
|
3--4 & 9 \\
|
|
|
|
\\
|
|
|
|
\end{tabular}
|
|
|
|
\end{samepage}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
After this, the algorithm goes through the list
|
|
|
|
and adds an edge to the tree if it joins
|
|
|
|
two separate components.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
Initially, each node is in its own component:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-08 12:28:52 +01:00
|
|
|
The first edge to be added to the tree is
|
|
|
|
edge 5--6 that joins components
|
|
|
|
$\{5\}$ and $\{6\}$ into component $\{5,6\}$:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2017-01-08 12:28:52 +01:00
|
|
|
After this, edges 1--2, 3--6 and 1--5 are added in a similar way:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
After those steps, many components have been joined
|
|
|
|
and there are two components in the tree:
|
|
|
|
$\{1,2,3,5,6\}$ and $\{4\}$.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
The next edge in the list is edge 2--3,
|
|
|
|
but it will not be included in the tree because
|
|
|
|
nodes 2 and 3 are already in the same component.
|
|
|
|
For the same reason, edge 2--5 will not be added
|
|
|
|
to the tree.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{samepage}
|
2017-01-08 12:28:52 +01:00
|
|
|
Finally, edge 4--6 will be included in the tree:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{samepage}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
After this, the algorithm terminates because
|
|
|
|
there is a path between any two nodes and
|
|
|
|
the graph is connected.
|
|
|
|
The resulting graph is a minimum spanning tree
|
|
|
|
with weight $2+3+3+5+7=20$.
|
|
|
|
|
|
|
|
\subsubsection{Why does this work?}
|
|
|
|
|
|
|
|
It's a good question why Kruskal's algorithm works.
|
|
|
|
Why does the greedy strategy guarantee that we
|
|
|
|
will find a minimum spanning tree?
|
|
|
|
|
|
|
|
Let's see what happens if the lightest edge in
|
|
|
|
the graph is not included in the minimum spanning tree.
|
|
|
|
For example, assume that a minimum spanning tree
|
|
|
|
for the above graph would not contain the edge
|
|
|
|
between nodes 5 and 6 with weight 2.
|
|
|
|
We don't know exactly how the new minimum spanning tree
|
|
|
|
would look like, but still it has to contain some edges.
|
|
|
|
Assume that the tree would be as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
\path[draw,thick,-,dashed] (1) -- (2);
|
|
|
|
\path[draw,thick,-,dashed] (2) -- (5);
|
|
|
|
\path[draw,thick,-,dashed] (2) -- (3);
|
|
|
|
\path[draw,thick,-,dashed] (3) -- (4);
|
|
|
|
\path[draw,thick,-,dashed] (4) -- (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
However, it's not possible that the above tree
|
|
|
|
would be a real minimum spanning tree for the graph.
|
|
|
|
The reason for this is that we can remove an edge
|
|
|
|
from it and replace it with the edge with weight 2.
|
|
|
|
This produces a spanning tree whose weight is
|
|
|
|
\emph{smaller}:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
|
|
|
|
\path[draw,thick,-,dashed] (1) -- (2);
|
|
|
|
\path[draw,thick,-,dashed] (2) -- (5);
|
|
|
|
\path[draw,thick,-,dashed] (3) -- (4);
|
|
|
|
\path[draw,thick,-,dashed] (4) -- (6);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
For this reason, it is always optimal to include the lightest edge
|
|
|
|
in the minimum spanning tree.
|
|
|
|
Using a similar argument, we can show that we
|
|
|
|
can also add the second lightest edge to the tree, and so on.
|
|
|
|
Thus, Kruskal's algorithm works correctly and
|
|
|
|
always produces a minimum spanning tree.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
\subsubsection{Implementation}
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
Kruskal's algorithm can be conveniently
|
|
|
|
implemented using an edge list.
|
|
|
|
The first phase of the algorithm sorts the
|
|
|
|
edges in $O(m \log m)$ time.
|
|
|
|
After this, the second phase of the algorithm
|
|
|
|
builds the minimum spanning tree.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
The second phase of the algorithm looks as follows:
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
for (...) {
|
2017-01-08 12:28:52 +01:00
|
|
|
if (!same(a,b)) union(a,b);
|
2016-12-28 23:54:51 +01:00
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
2017-01-08 12:28:52 +01:00
|
|
|
The loop goes through the edges in the list
|
|
|
|
and always processes an edge $a$--$b$
|
|
|
|
where $a$ and $b$ are two nodes.
|
|
|
|
The code uses two functions:
|
|
|
|
the function \texttt{same} determines
|
|
|
|
if the nodes are in the same component,
|
|
|
|
and the function \texttt{unite}
|
|
|
|
joins two components into a single component.
|
|
|
|
|
|
|
|
The problem is how to efficiently implement
|
|
|
|
the functions \texttt{same} and \texttt{unite}.
|
|
|
|
One possibility is to maintain the graph
|
|
|
|
in a usual way and implement the function
|
|
|
|
\texttt{same} as graph traversal.
|
|
|
|
However, using this technique,
|
|
|
|
the running time of the function \texttt{same} would be $O(n+m)$,
|
|
|
|
and this would be slow because the function will be
|
|
|
|
called for each edge in the graph.
|
|
|
|
|
|
|
|
We will solve the problem using a union-find structure
|
|
|
|
that implements both the functions in $O(\log n)$ time.
|
|
|
|
Thus, the time complexity of Kruskal's algorithm
|
|
|
|
will be only $O(m \log n)$ after sorting the edge list.
|
2016-12-28 23:54:51 +01:00
|
|
|
|
|
|
|
\section{Union-find-rakenne}
|
|
|
|
|
|
|
|
\index{union-find-rakenne}
|
|
|
|
|
|
|
|
\key{Union-find-rakenne} pitää yllä
|
|
|
|
alkiojoukkoja.
|
|
|
|
Joukot ovat erillisiä,
|
|
|
|
eli tietty alkio on tarkalleen
|
|
|
|
yhdessä joukossa.
|
|
|
|
Rakenne tarjoaa kaksi operaatiota,
|
|
|
|
jotka toimivat ajassa $O(\log n)$.
|
|
|
|
Ensimmäinen operaatio tarkistaa,
|
|
|
|
ovatko kaksi alkiota samassa joukossa.
|
|
|
|
Toinen operaatio yhdistää kaksi
|
|
|
|
joukkoa toisiinsa.
|
|
|
|
|
|
|
|
\subsubsection{Rakenne}
|
|
|
|
|
|
|
|
Union-find-rakenteessa jokaisella
|
|
|
|
joukolla on edustaja-alkio.
|
|
|
|
Kaikki muut joukon alkiot osoittavat
|
|
|
|
edustajaan joko suoraan tai
|
|
|
|
muiden alkioiden kautta.
|
|
|
|
|
|
|
|
Esimerkiksi jos joukot ovat
|
|
|
|
$\{1,4,7\}$, $\{5\}$ ja $\{2,3,6,8\}$,
|
|
|
|
tilanne voisi olla:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[draw, circle] (1) at (0,-1) {$1$};
|
|
|
|
\node[draw, circle] (2) at (7,0) {$2$};
|
|
|
|
\node[draw, circle] (3) at (7,-1.5) {$3$};
|
|
|
|
\node[draw, circle] (4) at (1,0) {$4$};
|
|
|
|
\node[draw, circle] (5) at (4,0) {$5$};
|
|
|
|
\node[draw, circle] (6) at (6,-2.5) {$6$};
|
|
|
|
\node[draw, circle] (7) at (2,-1) {$7$};
|
|
|
|
\node[draw, circle] (8) at (8,-2.5) {$8$};
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
\path[draw,thick,->] (7) -- (4);
|
|
|
|
|
|
|
|
\path[draw,thick,->] (3) -- (2);
|
|
|
|
\path[draw,thick,->] (6) -- (3);
|
|
|
|
\path[draw,thick,->] (8) -- (3);
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
Tässä tapauksessa alkiot 4, 5 ja 2
|
|
|
|
ovat joukkojen edustajat.
|
|
|
|
Minkä tahansa alkion edustaja
|
|
|
|
löytyy kulkemalla alkiosta lähtevää polkua
|
|
|
|
eteenpäin niin kauan, kunnes polku päättyy.
|
|
|
|
Esimerkiksi alkion 6 edustaja on 2,
|
|
|
|
koska alkiosta 6 lähtevä
|
|
|
|
polku on $6 \rightarrow 3 \rightarrow 2$.
|
|
|
|
Tämän avulla voi selvittää,
|
|
|
|
ovatko kaksi alkiota samassa joukossa:
|
|
|
|
jos kummankin alkion edustaja on sama,
|
|
|
|
alkiot ovat samassa joukossa,
|
|
|
|
ja muuten ne ovat eri joukoissa.
|
|
|
|
|
|
|
|
Kahden joukon yhdistäminen tapahtuu
|
|
|
|
valitsemalla toinen edustaja
|
|
|
|
joukkojen yhteiseksi edustajaksi
|
|
|
|
ja kytkemällä toinen edustaja siihen.
|
|
|
|
Esimerkiksi joukot $\{1,4,7\}$ ja $\{2,3,6,8\}$
|
|
|
|
voi yhdistää näin joukoksi $\{1,2,3,4,6,7,8\}$:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\node[draw, circle] (1) at (2,-1) {$1$};
|
|
|
|
\node[draw, circle] (2) at (7,0) {$2$};
|
|
|
|
\node[draw, circle] (3) at (7,-1.5) {$3$};
|
|
|
|
\node[draw, circle] (4) at (3,0) {$4$};
|
|
|
|
\node[draw, circle] (6) at (6,-2.5) {$6$};
|
|
|
|
\node[draw, circle] (7) at (4,-1) {$7$};
|
|
|
|
\node[draw, circle] (8) at (8,-2.5) {$8$};
|
|
|
|
|
|
|
|
\path[draw,thick,->] (1) -- (4);
|
|
|
|
\path[draw,thick,->] (7) -- (4);
|
|
|
|
|
|
|
|
\path[draw,thick,->] (3) -- (2);
|
|
|
|
\path[draw,thick,->] (6) -- (3);
|
|
|
|
\path[draw,thick,->] (8) -- (3);
|
|
|
|
|
|
|
|
\path[draw,thick,->] (4) -- (2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
Joukkojen yhteiseksi edustajaksi valitaan alkio 2,
|
|
|
|
minkä vuoksi alkio 4 yhdistetään siihen.
|
|
|
|
Tästä lähtien alkio 2 edustaa kaikkia joukon alkioita.
|
|
|
|
|
|
|
|
Tehokkuuden kannalta oleellista on,
|
|
|
|
miten yhdistäminen tapahtuu.
|
|
|
|
Osoittautuu, että ratkaisu on yksinkertainen:
|
|
|
|
riittää yhdistää aina pienempi joukko suurempaan,
|
|
|
|
tai kummin päin tahansa,
|
|
|
|
jos joukot ovat yhtä suuret.
|
|
|
|
Tällöin pisin ketju
|
|
|
|
alkiosta edustajaan on aina luokkaa $O(\log n)$,
|
|
|
|
koska jokainen askel eteenpäin
|
|
|
|
ketjussa kaksinkertaistaa
|
|
|
|
vastaavan joukon koon.
|
|
|
|
|
|
|
|
\subsubsection{Toteutus}
|
|
|
|
|
|
|
|
Union-find-rakenne on kätevää toteuttaa
|
|
|
|
taulukoiden avulla.
|
|
|
|
Seuraavassa toteutuksessa taulukko \texttt{k}
|
|
|
|
viittaa seuraavaan alkioon ketjussa
|
|
|
|
tai alkioon itseensä, jos alkio on edustaja.
|
|
|
|
Taulukko \texttt{s} taas kertoo jokaiselle edustajalle,
|
|
|
|
kuinka monta alkiota niiden joukossa on.
|
|
|
|
|
|
|
|
Aluksi jokainen alkio on omassa joukossaan,
|
|
|
|
jonka koko on 1:
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
for (int i = 1; i <= n; i++) k[i] = i;
|
|
|
|
for (int i = 1; i <= n; i++) s[i] = 1;
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
Funktio \texttt{id} kertoo alkion $x$
|
|
|
|
joukon edustajan. Alkion edustaja löytyy
|
|
|
|
käymällä ketju läpi alkiosta $x$ alkaen.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
int id(int x) {
|
|
|
|
while (x != k[x]) x = k[x];
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
Funktio \texttt{sama} kertoo,
|
|
|
|
ovatko alkiot $a$ ja $b$ samassa joukossa.
|
|
|
|
Tämä onnistuu helposti funktion
|
|
|
|
\texttt{id} avulla.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
bool sama(int a, int b) {
|
|
|
|
return id(a) == id(b);
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\begin{samepage}
|
|
|
|
Funktio \texttt{liita} yhdistää
|
|
|
|
puolestaan alkioiden $a$ ja $b$ osoittamat
|
|
|
|
joukot yhdeksi joukoksi.
|
|
|
|
Funktio etsii ensin joukkojen edustajat
|
|
|
|
ja yhdistää sitten pienemmän joukon suurempaan.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
void liita(int a, int b) {
|
|
|
|
a = id(a);
|
|
|
|
b = id(b);
|
|
|
|
if (s[b] > s[a]) swap(a,b);
|
|
|
|
s[a] += s[b];
|
|
|
|
k[b] = a;
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
\end{samepage}
|
|
|
|
|
|
|
|
Funktion \texttt{id} aikavaativuus on $O(\log n)$
|
|
|
|
olettaen, että ketjun pituus on luokkaa $O(\log n)$.
|
|
|
|
Niinpä myös funktioiden \texttt{sama} ja \texttt{liita}
|
|
|
|
aikavaativuus on $O(\log n)$.
|
|
|
|
Funktio \texttt{liita} varmistaa,
|
|
|
|
että ketjun pituus on luokkaa $O(\log n)$
|
|
|
|
yhdistämällä pienemmän joukon suurempaan.
|
|
|
|
|
|
|
|
% Funktiota \texttt{id} on mahdollista vielä tehostaa
|
|
|
|
% seuraavasti:
|
|
|
|
%
|
|
|
|
% \begin{lstlisting}
|
|
|
|
% int id(int x) {
|
|
|
|
% if (x == k[x]) return x;
|
|
|
|
% return k[x] = id(x);
|
|
|
|
% }
|
|
|
|
% \end{lstlisting}
|
|
|
|
%
|
|
|
|
% Nyt joukon edustajan etsimisen yhteydessä kaikki ketjun
|
|
|
|
% alkiot laitetaan osoittamaan suoraan edustajaan.
|
|
|
|
% On mahdollista osoittaa, että tämän avulla
|
|
|
|
% funktioiden \texttt{sama} ja \texttt{liita}
|
|
|
|
% aikavaativuus on tasoitetusti
|
|
|
|
% vain $O(\alpha(n))$, missä $\alpha(n)$ on
|
|
|
|
% hyvin hitaasti kasvava käänteinen Ackermannin funktio.
|
|
|
|
|
|
|
|
\section{Primin algoritmi}
|
|
|
|
|
|
|
|
\index{Primin algoritmi@Primin algoritmi}
|
|
|
|
|
|
|
|
\key{Primin algoritmi} on vaihtoehtoinen menetelmä
|
|
|
|
verkon pienimmän virittävän puun muodostamiseen.
|
|
|
|
Algoritmi aloittaa puun muodostamisen jostakin
|
|
|
|
verkon solmusta ja lisää puuhun aina kaaren,
|
|
|
|
joka on mahdollisimman kevyt ja joka
|
|
|
|
liittää puuhun uuden solmun.
|
|
|
|
Lopulta kaikki solmut on lisätty puuhun
|
|
|
|
ja pienin virittävä puu on valmis.
|
|
|
|
|
|
|
|
Primin algoritmin toiminta on lähellä
|
|
|
|
Dijkstran algoritmia.
|
|
|
|
Erona on, että Dijkstran algoritmissa valitaan
|
|
|
|
kaari, jonka kautta syntyy lyhin polku alkusolmusta
|
|
|
|
uuteen solmuun, mutta Primin algoritmissa
|
|
|
|
valitaan vain kevein kaari, joka johtaa uuteen solmuun.
|
|
|
|
|
|
|
|
\subsubsection{Esimerkki}
|
|
|
|
|
|
|
|
Tarkastellaan Primin algoritmin toimintaa
|
|
|
|
seuraavassa verkossa:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
|
|
|
|
%\path[draw=red,thick,-,line width=2pt] (5) -- (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
Aluksi solmujen välillä ei ole mitään kaaria:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
Puun muodostuksen voi aloittaa mistä tahansa solmusta,
|
|
|
|
ja aloitetaan se nyt solmusta 1.
|
|
|
|
Kevein kaari on painoltaan 3 ja se johtaa solmuun 2:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
Nyt kevein uuteen solmuun johtavan
|
|
|
|
kaaren paino on 5,
|
|
|
|
ja voimme laajentaa joko solmuun 3 tai 5.
|
|
|
|
Valitaan solmu 3:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
%\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
%\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{samepage}
|
|
|
|
Sama jatkuu, kunnes kaikki solmut ovat mukana puussa:
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.9]
|
|
|
|
\node[draw, circle] (1) at (1.5,2) {$1$};
|
|
|
|
\node[draw, circle] (2) at (3,3) {$2$};
|
|
|
|
\node[draw, circle] (3) at (5,3) {$3$};
|
|
|
|
\node[draw, circle] (4) at (6.5,2) {$4$};
|
|
|
|
\node[draw, circle] (5) at (3,1) {$5$};
|
|
|
|
\node[draw, circle] (6) at (5,1) {$6$};
|
|
|
|
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
|
|
|
|
\path[draw,thick,-] (2) -- node[font=\small,label=above:5] {} (3);
|
|
|
|
%\path[draw,thick,-] (3) -- node[font=\small,label=above:9] {} (4);
|
|
|
|
%\path[draw,thick,-] (1) -- node[font=\small,label=below:5] {} (5);
|
|
|
|
\path[draw,thick,-] (5) -- node[font=\small,label=below:2] {} (6);
|
|
|
|
\path[draw,thick,-] (6) -- node[font=\small,label=below:7] {} (4);
|
|
|
|
%\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (5);
|
|
|
|
\path[draw,thick,-] (3) -- node[font=\small,label=left:3] {} (6);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{samepage}
|
|
|
|
|
|
|
|
\subsubsection{Toteutus}
|
|
|
|
|
|
|
|
Dijkstran algoritmin tavoin Primin algoritmin voi toteuttaa
|
|
|
|
tehokkaasti käyttämällä prioriteettijonoa.
|
|
|
|
Primin algoritmin tapauksessa jono sisältää kaikki solmut,
|
|
|
|
jotka voi yhdistää nykyiseen komponentiin kaarella,
|
|
|
|
järjestyksessä kaaren painon mukaan kevyimmästä raskaimpaan.
|
|
|
|
|
|
|
|
Primin algoritmin aikavaativuus on $O(n + m \log m)$
|
|
|
|
eli sama kuin Dijkstran algoritmissa.
|
|
|
|
Käytännössä Primin algoritmi on suunnilleen
|
|
|
|
yhtä nopea kuin Kruskalin algoritmi,
|
|
|
|
ja onkin makuasia, kumpaa algoritmia käyttää.
|
|
|
|
Useimmat kisakoodarit käyttävät kuitenkin Kruskalin algoritmia.
|
|
|
|
|
|
|
|
|