References etc.
This commit is contained in:
parent
0787324d1e
commit
101a111e82
|
@ -342,7 +342,8 @@ corresponds to the binomial coefficient formula.
|
|||
|
||||
\index{Catalan number}
|
||||
|
||||
The \key{Catalan number} $C_n$ equals the
|
||||
The \key{Catalan number}\footnote{E. C. Catalan (1814--1894)
|
||||
was a Belgian mathematician.} $C_n$ equals the
|
||||
number of valid
|
||||
parenthesis expressions that consist of
|
||||
$n$ left parentheses and $n$ right parentheses.
|
||||
|
@ -678,7 +679,8 @@ elements should be changed.
|
|||
|
||||
\index{Burnside's lemma}
|
||||
|
||||
\key{Burnside's lemma} can be used to count
|
||||
\key{Burnside's lemma}\footnote{Actually, Burnside did not discover this lemma;
|
||||
he only mentioned it in his book \cite{bur97}.} can be used to count
|
||||
the number of combinations so that
|
||||
only one representative is counted
|
||||
for each group of symmetric combinations.
|
||||
|
@ -764,7 +766,10 @@ with 3 colors is
|
|||
|
||||
\index{Cayley's formula}
|
||||
|
||||
\key{Cayley's formula} states that
|
||||
\key{Cayley's formula}\footnote{While the formula
|
||||
is named after A. Cayley,
|
||||
who studied it in 1889,
|
||||
it was discovered earlier by C. W. Borchardt in 1860.} states that
|
||||
there are $n^{n-2}$ labeled trees
|
||||
that contain $n$ nodes.
|
||||
The nodes are labeled $1,2,\ldots,n$,
|
||||
|
@ -827,7 +832,8 @@ be derived using Prüfer codes.
|
|||
|
||||
\index{Prüfer code}
|
||||
|
||||
A \key{Prüfer code} is a sequence of
|
||||
A \key{Prüfer code}\footnote{In 1918, H. Prüfer proved
|
||||
Cayley's theorem using Prüfer codes \cite{pru18}.} is a sequence of
|
||||
$n-2$ numbers that describes a labeled tree.
|
||||
The code is constructed by following a process
|
||||
that removes $n-2$ leaves from the tree.
|
||||
|
|
10
list.tex
10
list.tex
|
@ -40,6 +40,11 @@
|
|||
Nim, a game with a complete mathematical theory.
|
||||
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
|
||||
|
||||
\bibitem{bur97}
|
||||
W. Burnside.
|
||||
\emph{Theory of Groups of Finite Order},
|
||||
Cambridge University Press, 1897.
|
||||
|
||||
\bibitem{cod15}
|
||||
Codeforces: On ''Mo's algorithm'',
|
||||
\url{http://codeforces.com/blog/entry/20032}
|
||||
|
@ -242,6 +247,11 @@
|
|||
Shortest connection networks and some generalizations.
|
||||
\emph{Bell System Technical Journal}, 36(6):1389--1401, 1957.
|
||||
|
||||
\bibitem{pru18}
|
||||
H. Prüfer.
|
||||
Neuer Beweis eines Satzes über Permutationen.
|
||||
\emph{Arch. Math. Phys}, 27:742--744, 1918.
|
||||
|
||||
\bibitem{q27}
|
||||
27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
|
||||
\url{https://github.com/preusser/q27}
|
||||
|
|
Loading…
Reference in New Issue