Merge 2d53e3a6f5
into f269ae3919
This commit is contained in:
commit
ed6bef7224
|
@ -247,7 +247,7 @@ value[0] = 0;
|
|||
for (int x = 1; x <= n; x++) {
|
||||
value[x] = INF;
|
||||
for (auto c : coins) {
|
||||
if (x-c >= 0) {
|
||||
if (x >= c) {
|
||||
value[x] = min(value[x], value[x-c]+1);
|
||||
}
|
||||
}
|
||||
|
@ -283,7 +283,7 @@ value[0] = 0;
|
|||
for (int x = 1; x <= n; x++) {
|
||||
value[x] = INF;
|
||||
for (auto c : coins) {
|
||||
if (x-c >= 0 && value[x-c]+1 < value[x]) {
|
||||
if ((x >= c) && value[x-c]+1 < value[x]) {
|
||||
value[x] = value[x-c]+1;
|
||||
first[x] = c;
|
||||
}
|
||||
|
@ -358,7 +358,7 @@ for $0 \le x \le n$:
|
|||
count[0] = 1;
|
||||
for (int x = 1; x <= n; x++) {
|
||||
for (auto c : coins) {
|
||||
if (x-c >= 0) {
|
||||
if (x >= c) {
|
||||
count[x] += count[x-c];
|
||||
}
|
||||
}
|
||||
|
@ -634,12 +634,22 @@ int sum[N][N];
|
|||
\end{lstlisting}
|
||||
and calculate the sums as follows:
|
||||
\begin{lstlisting}
|
||||
for (int y = 1; y <= n; y++) {
|
||||
for (int x = 1; x <= n; x++) {
|
||||
for (int y = 1; y < N; y++) {
|
||||
for (int x = 1; x < N; x++) {
|
||||
sum[y][x] = max(sum[y][x-1],sum[y-1][x])+value[y][x];
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
However, below is a better solution that only uses one dimensional
|
||||
array to keep track of the maximum sums
|
||||
\begin{lstlisting}
|
||||
for (int y = 1; y < N; ++y) {
|
||||
sum[0] += value[y][0];
|
||||
for (int x = 1; x < N; ++x) {
|
||||
sum[x] = value[y][x] + max(sum[x-1], sum[x]);
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
The time complexity of the algorithm is $O(n^2)$.
|
||||
|
||||
\section{Knapsack problems}
|
||||
|
|
Loading…
Reference in New Issue